两类一致等时系统的小振幅极限环分支

桑波

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (5) : 728-735.

PDF(309 KB)
PDF(309 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (5) : 728-735. DOI: 10.12341/jssms12784
论文

两类一致等时系统的小振幅极限环分支

    桑波
作者信息 +

SMALL-AMPLITUDE LIMIT CYCLE BIFURCATIONS FOR TWO CLASSES OF RIGID SYSTEMS

    SANG Bo
Author information +
文章历史 +

摘要

对于一类六次一致等时系统, 得到了原点为中心的充要条件, 并证明从细焦点至多可分支出7个小振幅极限环. 对于一类五次一致等时系统, 给出其具有6个小振幅极限环的具体实例.

Abstract

For a class of six order rigid systems, the necessary and sufficient conditions for the origin to be center are obtained, and the maximal number of limit cycles bifurcating from the weak focus is proved to be 7. For a class of qintic rigid systems, a concrete example of the systems is given, which exhibits six amplitude limit cycles around the origin.

关键词

一致等时系统 / 约化焦点量 / 时间可逆性 / 极限环.

引用本文

导出引用
桑波. 两类一致等时系统的小振幅极限环分支. 系统科学与数学, 2016, 36(5): 728-735. https://doi.org/10.12341/jssms12784
SANG Bo. SMALL-AMPLITUDE LIMIT CYCLE BIFURCATIONS FOR TWO CLASSES OF RIGID SYSTEMS. Journal of Systems Science and Mathematical Sciences, 2016, 36(5): 728-735 https://doi.org/10.12341/jssms12784
中图分类号: 34C05   
PDF(309 KB)

248

Accesses

0

Citation

Detail

段落导航
相关文章

/