“安全第一"下的不连续价格过程的投资组合问题

闫伟

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (7) : 1031-1039.

PDF(428 KB)
PDF(428 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (7) : 1031-1039. DOI: 10.12341/jssms12827
论文

“安全第一"下的不连续价格过程的投资组合问题

    闫伟
作者信息 +

OPTIMAL PORTFOLIO WITH STOCHASTIC PROCESS UNDER SAFETY-FIRST CRITERION

    YAN Wei
Author information +
文章历史 +

摘要

主要研究了``安全第一"原则下的连续时间随机过程的投资组合问题, 所考察的模型是带有布朗运动和跳跃扩散的随机过程. 推导出了相应的哈密顿雅克比贝尔曼方程. 当不存在无风险资产时, 得出了最优投资策略的闭环解. 同样讨论了存在无风险资产投资时的最优投资策略. 最后给出了一个实例加以说明此模型和方法的有效性和可行性.

Abstract

This paper studies the portfolio problem of continuous-time stochastic processes under safety-first criterion, where the considered mathematical model is governed by the Brown motion and jump-diffusion process. The corresponding Hamilton-Jacobi-Bellman (HJB) equation of the problem is derived. The closed-form solutions of optimal strategies are presented when there is no riskless asset. Moreover, the optimal strategies of problem are also discussed while there is one riskless asset. Finally, a numerical example is given to illustrate the efficiency and feasibility of the constructed models and developed methods.

关键词

``安全第一" / 准则 / 连续时间投资模型 / 闭环解 / 泊松过程 / HJB方程.

引用本文

导出引用
闫伟. “安全第一"下的不连续价格过程的投资组合问题. 系统科学与数学, 2016, 36(7): 1031-1039. https://doi.org/10.12341/jssms12827
YAN Wei. OPTIMAL PORTFOLIO WITH STOCHASTIC PROCESS UNDER SAFETY-FIRST CRITERION. Journal of Systems Science and Mathematical Sciences, 2016, 36(7): 1031-1039 https://doi.org/10.12341/jssms12827
中图分类号: 49L20    65K10   
PDF(428 KB)

227

Accesses

0

Citation

Detail

段落导航
相关文章

/