犹豫模糊语言幂均算子及其在群决策中的应用

魏翠萍,葛淑娜

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (8) : 1308-1317.

PDF(413 KB)
PDF(413 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (8) : 1308-1317. DOI: 10.12341/jssms12868
论文

犹豫模糊语言幂均算子及其在群决策中的应用

    魏翠萍1,葛淑娜2
作者信息 +

A POWER AVERAGE OPERATOR FOR HESITANT FUZZY LINGUISTIC TERM SETS AND ITS APPLICATION IN GROUP DECISION-MAKING

    WEI Cuiping 1, GE Shuna2
Author information +
文章历史 +

摘要

犹豫模糊语言术语集用以描述专家给出语言评价时表现出犹豫的情形. 文章针对专家权重未知的犹豫模糊多属性群决策问题, 提出一种基于犹豫模糊语言幂均算子的群决策方法. 首先定义了犹豫模糊虚拟术语集, 犹豫模糊虚拟术语集上的距离和幂均算子, 然后建立一种专家间信息相互支持的犹豫模糊群决策方法. 该方法将专家给出的语言评价信息转化为犹豫模糊虚拟术语集, 用犹豫模糊虚拟术语集上的幂均算子构建群决策矩阵, 并 用基于\ TOPSIS 的方法对方案进行排序和择优. 最后通过实例说明了所提方法的实用性和有效性.

Abstract

Hesitant fuzzy linguistic term sets are suitable to deal with the situations where people have hesitancy in providing their linguistic assessments. An approach based on a power average operator for hesitant fuzzy linguistic term set is proposed for multi-attribute decision-making problems, in which the expert’s weights are unknown. We first introduce the notion of hesitant fuzzy virtual term sets, define a distance measure and a power average operator for hesitant fuzzy virtual term sets. Based on the operator, we give a method to solve the group decision-making problem with mutual support hesitant fuzzy linguistic information. By the method, the linguistic assessments offered by experts are transformed into hesitant fuzzy virtual term sets; then, the power average operator for hesitant fuzzy virtual term sets is used to get the group decision-making matrix and the TOPSIS method is applied for the ranking of alternatives. Finally, an illustrative example is given to demonstrate the practically and effectiveness of the proposed method.

关键词

多属性群决策 / 犹豫模糊语言术语集 / 虚拟术语 / TOPSIS.

引用本文

导出引用
魏翠萍 , 葛淑娜. 犹豫模糊语言幂均算子及其在群决策中的应用. 系统科学与数学, 2016, 36(8): 1308-1317. https://doi.org/10.12341/jssms12868
WEI Cuiping , GE Shuna. A POWER AVERAGE OPERATOR FOR HESITANT FUZZY LINGUISTIC TERM SETS AND ITS APPLICATION IN GROUP DECISION-MAKING. Journal of Systems Science and Mathematical Sciences, 2016, 36(8): 1308-1317 https://doi.org/10.12341/jssms12868
中图分类号: 90B50   
PDF(413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/