大型互联非线性分布参数系统的分散迭代学习控制

傅勤

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (10) : 1557-1573.

PDF(440 KB)
PDF(440 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (10) : 1557-1573. DOI: 10.12341/jssms12910
论文

大型互联非线性分布参数系统的分散迭代学习控制

    傅勤
作者信息 +

DECENTRALIZED ITERATIVE LEARNING CONTROL FOR LARGE-SCALE INTERCONNECTED NONLINEAR DISTRIBUTED PARAMETER SYSTEMS

    FU Qin
Author information +
文章历史 +

摘要

研究大型互联非线性分布参数系统的分散迭代学习控制问题, 该类大型互联分布参数系统由抛物型偏微分方程组或由双曲型偏微分方程组构成. 针对系统所满足的性质,基于P型学习律构建得到迭代学习控制律,在这种分散式控制方案中, 每个子系统的控制器仅依赖于该子系统的输出变量,不需要与其它子系统交换信息. 利用压缩映射原理,证明这种学习律能使得系统的输出跟踪误差于L2空间内沿迭代轴方向收敛. 仿真算例说明了所得结论的可行性和有效性.

Abstract

The problem of decentralized iterative learning control algorithm for a class of large-scale interconnected nonlinear distributed parameter systems is considered. Here, the considered large-scale interconnected distributed parameter systems are composed of parabolic partial differential equations or hyperbolic partial differential equations. According to system properties, iterative learning control laws are proposed for such large-scale interconnected distributed parameter systems based on P-type learning scheme. The proposed controller of each subsystem only relies on local output variables without any information exchanges with other subsystems. Using the contraction mapping method, it is shown that the scheme can guarantee the output tracking errors on L2 space converge along the iteration axis. A simulation example shows the feasibility and effectiveness of the conclusion.

关键词

P型学习律 / 分散迭代学习控制 / 大型互联分布参数系统.

引用本文

导出引用
傅勤. 大型互联非线性分布参数系统的分散迭代学习控制. 系统科学与数学, 2016, 36(10): 1557-1573. https://doi.org/10.12341/jssms12910
FU Qin. DECENTRALIZED ITERATIVE LEARNING CONTROL FOR LARGE-SCALE INTERCONNECTED NONLINEAR DISTRIBUTED PARAMETER SYSTEMS. Journal of Systems Science and Mathematical Sciences, 2016, 36(10): 1557-1573 https://doi.org/10.12341/jssms12910
中图分类号: 93A15    93C20    93C10    68T05   
PDF(440 KB)

Accesses

Citation

Detail

段落导航
相关文章

/