
有限理性与集值向量拟变分不等式的良定性
BOUNDED RATIONALITY AND WELL POSEDNESS OF SET-VALUED VECTOR QUASI-VARIATIONAL INEQUALITIES
利用非线性标量化技巧定义了集值向量拟变分不等式的有限理性模型, 接着通过这个模型引入了集值向量拟变分不等式的强良定性概念, 这种良定性统一了集值向量拟变分不等式的Levitin-Polyak良定性与Hadamard良定性, 最后进一步给出了集值向量拟变分不等式的强良定性的充分条件与度量刻画.
In this paper, we define a bounded rationality model for set-valued vector quasi-variational inequalities by using a nonlinear scalarization method. Based on its bounded rationality model, we introduce strong well-posedness for set-valued vector quasi-variational inequalities, which unifies its Hadamard and Levitin-Polyak well-posedness. Finally, sufficient conditions and metric characterizations for strong well-posedness of set-valued vector quasi-variational inequalities are given.
有限理性模型 / 集值向量拟变分不等式 / 强良定性 / 充分条件 / 度量刻画. {{custom_keyword}} /
/
〈 |
|
〉 |