有限理性与集值向量拟变分不等式的良定性

邓喜才,向淑文

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (10) : 1730-1742.

PDF(357 KB)
PDF(357 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (10) : 1730-1742. DOI: 10.12341/jssms12926
论文

有限理性与集值向量拟变分不等式的良定性

    邓喜才1,向淑文2
作者信息 +

BOUNDED RATIONALITY AND WELL POSEDNESS OF SET-VALUED VECTOR QUASI-VARIATIONAL  INEQUALITIES

    DENG Xicai 1,XIANG Shuwen2
Author information +
文章历史 +

摘要

利用非线性标量化技巧定义了集值向量拟变分不等式的有限理性模型, 接着通过这个模型引入了集值向量拟变分不等式的强良定性概念, 这种良定性统一了集值向量拟变分不等式的Levitin-Polyak良定性与Hadamard良定性, 最后进一步给出了集值向量拟变分不等式的强良定性的充分条件与度量刻画.

Abstract

In this paper, we define a bounded rationality model for set-valued vector quasi-variational inequalities by using a nonlinear scalarization method. Based on its bounded rationality model, we introduce strong well-posedness for set-valued vector quasi-variational inequalities, which unifies its Hadamard and Levitin-Polyak well-posedness. Finally, sufficient conditions and metric characterizations for strong well-posedness of set-valued vector quasi-variational inequalities are given.

关键词

有限理性模型 / 集值向量拟变分不等式 / 强良定性 / 充分条件 / 度量刻画.

引用本文

导出引用
邓喜才 , 向淑文. 有限理性与集值向量拟变分不等式的良定性. 系统科学与数学, 2016, 36(10): 1730-1742. https://doi.org/10.12341/jssms12926
DENG Xicai , XIANG Shuwen. BOUNDED RATIONALITY AND WELL POSEDNESS OF SET-VALUED VECTOR QUASI-VARIATIONAL  INEQUALITIES. Journal of Systems Science and Mathematical Sciences, 2016, 36(10): 1730-1742 https://doi.org/10.12341/jssms12926
中图分类号: 49K40    90C31   
PDF(357 KB)

277

Accesses

0

Citation

Detail

段落导航
相关文章

/