改进的优势度决策法及其排序方法研究

林志明,毛政元

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (11) : 2019-2028.

PDF(453 KB)
PDF(453 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (11) : 2019-2028. DOI: 10.12341/jssms12969
论文

改进的优势度决策法及其排序方法研究

    林志明1,毛政元2
作者信息 +

THE RESEARCH ON AN IMPROVED DOMINANCE DECISION MAKING METHOD AND ITS SORTING

    Lin Zhiming1 , Mao Zhengyuan2
Author information +
文章历史 +

摘要

从方案比较的视角提出了解决混合测度决策问题的优势度决策法.给出了一组优势相关的定义,改进了优势度计算公式,证明了优势度矩阵具有良好的互补性和一致性,分别用排序向量,优势向量,比较向量研究了方案优劣的排序方法及其特点,并与线性加权法和理想点法做了对比分析.结果表明,三种方法的排序结果都是一致的,但排序向量法因为包含了过多的冗余信息,计算量成倍增长;优势向量法因选择基点方案不同导致计算数值不一致;而比较向量法计算量小,精确性高,通用性好,诱导小区停车困难评价的实例分析进一步表明了该排序法的优势所在.

Abstract

In this paper, a dominance decision making method is proposed to solve mixed measure decision problems from the perspective of alternatives comparison. We give a group of definitions on dominance, improve the formula of computing dominance, testify the good complementarity and consistency owned by the dominance matrix, study the sorting methods among alternatives and their characteristics respectively by means of sorting vector, dominance vector and comparing vector, and make a contrast analysis between the proposed method and those such as linear weighting method, TOPSIS method. The results show that except for the same sorting results, sorting vector method has big computational complexity because of too much redundant information, dominance vector method has an inconsistent calculate value when selecting different alternaltive as base point, while comparing vector mathod has less computational complexity in conjunction with better accuracy and compatibility. One illustrative numberical example about assessing guidance district parking difficulties deeply reveals the advantage of the sorting method.

关键词

混合测度 / 方案比较 / 优势度矩阵 / 一致性 / 比较向量.

引用本文

导出引用
林志明 , 毛政元. 改进的优势度决策法及其排序方法研究. 系统科学与数学, 2016, 36(11): 2019-2028. https://doi.org/10.12341/jssms12969
Lin Zhiming , Mao Zhengyuan. THE RESEARCH ON AN IMPROVED DOMINANCE DECISION MAKING METHOD AND ITS SORTING. Journal of Systems Science and Mathematical Sciences, 2016, 36(11): 2019-2028 https://doi.org/10.12341/jssms12969
中图分类号: 03C65    03E72   
PDF(453 KB)

289

Accesses

0

Citation

Detail

段落导航
相关文章

/