
基于全变差空间正则化的纤维方向分布估计
Total Variation Based Spatial Brain Fiber Orientation Estimation
提高白质纤维交叉重构能力是有效提高纤维跟踪技术的前提之一,目前大多纤维重构方法都是基于白质体素的独立重构,没有考虑到纤维的连续性特征,这就促使文章从全局范围考虑提高白质纤维重构能力.文章提出了一种基于全变差空间正则化的纤维方向分布估计方法,该方法首先利用字典基分布的球面反卷积策略拟合多壳采样信号,为了能够适用于单壳和多壳采样方案,文章重新定义了广义的纤维响应函数;进而在
It is an important prerequisite of development of tractography to improve the accuracy of crossing fiber reconstruction. Most of the existing reconstructing methods are voxel-wise, which are sub-optimal for the disregard of the fiber consistency. Thus, in this work we propose a global fiber estimation method based on local sparsity and spatial total variation regularization to improve the accuracy of fiber orientation distribution. Firstly, spherical deconvolution based on a dictionary basis is built for the multi-shell signal fitting, in which the response function is re-estimated with different sensitive coefficients. Then a total variation in the
白质纤维重构 / 多壳采样 / 球面反卷积 / 全变差正则化. {{custom_keyword}} /
/
〈 |
|
〉 |