基于周期GARCH过程VaR的分位回归估计

赵彪,赵子龙,冯牧

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (1) : 253-265.

PDF(490 KB)
PDF(490 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (1) : 253-265. DOI: 10.12341/jssms13058
论文

基于周期GARCH过程VaR的分位回归估计

    赵彪1,赵子龙2,1,冯牧2,1
作者信息 +

Quantile Regression Estimation for VaR of P-Garch Processes

    ZHAO Biao1 ,ZHAO Zilong2,1 ,FENG Mu2,1
Author information +
文章历史 +

摘要

近几年来,风险价值(VaR)已成为金融市场风险度量及风险管理的标准工具. 文章用周期广义自回归条件异方差(GARCH)模型拟合金融市场数据,并应用分位回归方法得到此模型参数及条件VaR的估计,在一定条件下估计具有强相合性及渐近正态性,蒙特卡罗模拟结果表明此方法具有稳健性,且对于条件VaR的预测具有很高的准确性,沪深300指数的实证分析结果表明此方法关于VaR的预测具有非常好的效果.

Abstract

Recently, Value-at-Risk (VaR) has become a standard tool for risk measure and management. In this paper, we consider the periodic generalized autoregressive conditional heteroskedasticity~(P-GARCH) process and propose a robust estimate for parameters and conditional VaR. Under some mild condition, our proposed estimator is strong consistent and asymptotic normal. The Monte Carlo simulation shows that the proposed estimation is robust for heavy tailed distributions and has good performance for VaR prediction. The proposed methodology for VaR prediction is also illustrated on CSI 300.

关键词

周期 GARCH / 风险价值 (VaR) / 强相合 / 渐近正态.

引用本文

导出引用
赵彪 , 赵子龙 , 冯牧. 基于周期GARCH过程VaR的分位回归估计. 系统科学与数学, 2017, 37(1): 253-265. https://doi.org/10.12341/jssms13058
ZHAO Biao , ZHAO Zilong , FENG Mu. Quantile Regression Estimation for VaR of P-Garch Processes. Journal of Systems Science and Mathematical Sciences, 2017, 37(1): 253-265 https://doi.org/10.12341/jssms13058
中图分类号: 62G10    62P05   
PDF(490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/