基于广义分圆法的一类素数幂周期跳频序列

徐善顶,曹喜望,顾晶晶

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (1) : 266-276.

PDF(352 KB)
PDF(352 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (1) : 266-276. DOI: 10.12341/jssms13059
论文

基于广义分圆法的一类素数幂周期跳频序列

    徐善顶1,2,曹喜望1,3,顾晶晶1
作者信息 +

A Class of Frequency-Hopping Sequences with Prime-Power Length Based upon Generalized Cyclotomy

    XU Shanding1,2 ,CAO Xiwang1,3 ,GU Jingjing1
Author information +
文章历史 +

摘要

关于素数幂pm(m>1), 首先给出了一类新的广义分圆及其性质; 其次, 基于此广义分圆法构造了一类周期为pm的跳频序列族; 最后证明了该序列族关于平均汉明相关界是最优的, 而且当m=2时该序列族关于最大汉明相关界也是最优的.

Abstract

Firstly, a kind of generalized cyclotomy with respect to a prime-power pm (m>1) is presented and its properties are investigated; Secondly, based upon the generalized cyclotomy, a class of frequency-hopping sequences (FHSs) set with length of sequences being pm is constructed; Finally, it is proved that the proposed FHSs set is not only optimal with regard to the average Hamming correlation (AHC) bound, but also optimal with regard to the maximal Hamming correlation (MHC) bound when m=2.

引用本文

导出引用
徐善顶 , 曹喜望 , 顾晶晶. 基于广义分圆法的一类素数幂周期跳频序列. 系统科学与数学, 2017, 37(1): 266-276. https://doi.org/10.12341/jssms13059
XU Shanding , CAO Xiwang , GU Jingjing. A Class of Frequency-Hopping Sequences with Prime-Power Length Based upon Generalized Cyclotomy. Journal of Systems Science and Mathematical Sciences, 2017, 37(1): 266-276 https://doi.org/10.12341/jssms13059
中图分类号: 94A55   
PDF(352 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/