逻辑动态系统的能观性及非奇异性

张奎泽,张利军

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (2) : 328-337.

PDF(478 KB)
PDF(478 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (2) : 328-337. DOI: 10.12341/jssms13065
论文

逻辑动态系统的能观性及非奇异性

    张奎泽1,张利军1,2
作者信息 +

Observability and Nonsingularity of Logical Dynamical Systems

    ZHANG Kuize1 ,ZHANG Lijun1,2
Author information +
文章历史 +

摘要

研究逻辑动态系统的能观性和非奇异性问题------分别为通过观测输出来得到初始状态和输入. 针对这两类问题, 分别定义两种不同的加权点对图, 从而提供一个判别能观性和非奇异性的通用方法. 为解决如何判别能观性, 用相应的加权点对图来构造有限自动机, 然后通过判别该自动机的完备性来判别能观性. 另外, 直接从对应于非奇异性的加权点对图出发构造出判别非奇异性的算法.

Abstract

This paper deals with two problems of observing states/inputs of logical dynamical systems from outputs --- Observability and nonsingularity. Different weighted pair graphs are defined for observability and nonsingularity respectively, and are used to provide a unified method for determining them. For observability, the corresponding weighted pair graph is transformed to a finite automaton, and then observability is determined by testing the completeness of the automaton. Nonsingularity is determined directly from the corresponding weighted pair graph.

关键词

逻辑动态系统 / 能观性 / 非奇异性 / 加权点对图 / 有限自动机.

引用本文

导出引用
张奎泽 , 张利军. 逻辑动态系统的能观性及非奇异性. 系统科学与数学, 2017, 37(2): 328-337. https://doi.org/10.12341/jssms13065
Observability and Nonsingularity of Logical Dynamical Systems. Journal of Systems Science and Mathematical Sciences, 2017, 37(2): 328-337 https://doi.org/10.12341/jssms13065
中图分类号: 93B07    68Q45   
PDF(478 KB)

Accesses

Citation

Detail

段落导航
相关文章

/