面板数据的自适应惩罚分位回归方法

陶丽,张元杰,田茂再

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (2) : 609-622.

PDF(797 KB)
PDF(797 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (2) : 609-622. DOI: 10.12341/jssms13088
论文

面板数据的自适应惩罚分位回归方法

    陶丽1,张元杰1,田茂再1,2,3
作者信息 +

Adaptive Penalty Quantile Regression for Panel Data

    TAO Li1 ,ZHANG Yuanjie 1 ,TIAN Maozai 1,2,3
Author information +
文章历史 +

摘要

传统的面板数据是从均值角度进行研究,但这会受经典假设条件的约束.而考虑面板数据的分位回归模型,可以更加全面地描述响应变量条件分布的全貌.文章引入自适应惩罚函数构造了自适应惩罚的分位回归面板数据方法,并证明所提出的估计量具有大样本性质.蒙特卡洛模拟结果显示该方法相对于均值回归更具优势,是处理面板数据的有效手段.文章最后对我国居民交通通讯消费进行案例分析,得到了有利于决策的参考信息.

Abstract

The study of traditional panel data is mainly based on the conditional mean regression methods, which cannot describe the variable characteristics on the different quantiles, resulting in the loss of much information. However, we can obtain a fully description of data by considering the quantile regression model for panel data. This paper presents a method to study panel data based on adaptive penalty quantile regression and a proof of its large sample properties. Monte Carlo simulation study shows that the proposed method is better than mean regression methods, which indicates that the proposed method is an effective way to deal with the panel data. Finally, we use the proposed method to analyze the case-study regarding the residents' demand for transportation and communications in China, and we draw some interesting conclusions, which make great sense for the related policymakers to make decisions.

关键词

面板数据 / 分位回归 / 惩罚函数 / 固定效应 / 交通通讯消费.

引用本文

导出引用
陶丽 , 张元杰 , 田茂再. 面板数据的自适应惩罚分位回归方法. 系统科学与数学, 2017, 37(2): 609-622. https://doi.org/10.12341/jssms13088
TAO Li , ZHANG Yuanjie , TIAN Maozai. Adaptive Penalty Quantile Regression for Panel Data. Journal of Systems Science and Mathematical Sciences, 2017, 37(2): 609-622 https://doi.org/10.12341/jssms13088
中图分类号: 62G05    62G08    62G20   
PDF(797 KB)

199

Accesses

0

Citation

Detail

段落导航
相关文章

/