
基于二部图的多智能体系统加权分组一致性
Weighted Group-Consensus of Multi-Agent System with Bipartite Topology
针对拓扑结构为二部图的多智能体系统,设计了由当前状态和时延状态不同权重构成的控制算法,通过采用频域控制理论中广义Nyquist准则和Gerschgorin圆盘定理,给出了多智能体系统实现加权分组一致性的充分条件.提出多智能体时延最大上界与权重参数具有单调递减函数关系,为改进加权分组一致性的最大时延上界提供了可行方法.最后通过数值仿真验证了结论的正确性.
This paper studies weighted group-consensus of multi-agent system with bipartite topology through adjusting the proportion of the current state and delay-state in the control algorithm. A sufficient condition for the convergence to weighted group-consensus is addressed by adopting the generalized Nyquist stability criterion and the Gerschgorin disk theorem. Monotone decreasing function relation is proposed between upper bound on the maximum time-delay and proportion parameter. An effective method is provided to enlarge upper bound on the maximum time-delay of weighted group-consensus. Correctness of the proposed result is verified through numerical simulation.
多智能体系统 / 分组一致性 / Nyquist准则 / 圆盘定理. {{custom_keyword}} /
/
〈 |
|
〉 |