考虑零售商退出风险的供应链鲁棒模型分析

孙彩虹,田真真

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (5) : 1244-1258.

PDF(637 KB)
PDF(637 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (5) : 1244-1258. DOI: 10.12341/jssms13155
论文

考虑零售商退出风险的供应链鲁棒模型分析

    孙彩虹1,田真真2
作者信息 +

The Analysis of Robust Model of New Product Supply Chain with Retailers' Exiting Risk

    SUN Caihong1 , TIAN Zhenzhen2
Author information +
文章历史 +

摘要

新产品市场需求信息的缺失以及供应链初构建时的不稳定性导致了零售商退出的高风险, 而退出必然给供应链各成员带来巨大的损失, 因此供应链需要及时制定应对策略. 文章以存在零售商退出风险的新产品供应链为研究对象, 运用Scarf在1958年提出的部分信息下的鲁棒决策方法, 分析了二级供应链双方的博弈过程, 并求得了最优解存在的条件与其表达式. 通过理论推演与仿真分析发现: 零售商退出风险对供应商和零售商的最优决策和利润造成冲击, 同时发现, 受冲击的程度与退出标准密切相关, 建议零售商在可承受的因低销量带来的利润损失之内, 应适当降低退出标准.

Abstract

The lack of market demand information of new product and the instability of the supply chain at the beginning stage lead to high risk of retails' exiting. And exiting brings huge losses to the supply chain members inevitably. So it is necessary for the supply chain to develop coping strategies in a timely manner. This paper chose the supply chain of new product with retails' exiting risk as the research object, and analyzed the game process of the two parts of supply chain using the robust decision methods under the partial information come up with by Scarf in 1958. At last we got the the existing conditions and its expression of the optimal solution. Through theoretical deduction and simulation analysis, we found that: Retailers' exiting risk has shock on on the optimal decisions and profits of supplier and retailer. We also found that the extent of the shock is closely related to the exiting criteria. Finally we suggested retailers should appropriately reduce the exit criteria in sustainable profit loss due to low sales.

关键词

零售商退出风险 / 新产品供应链 / 部分信息 / 退出标准.

引用本文

导出引用
孙彩虹 , 田真真. 考虑零售商退出风险的供应链鲁棒模型分析. 系统科学与数学, 2017, 37(5): 1244-1258. https://doi.org/10.12341/jssms13155
SUN Caihong , TIAN Zhenzhen. The Analysis of Robust Model of New Product Supply Chain with Retailers' Exiting Risk. Journal of Systems Science and Mathematical Sciences, 2017, 37(5): 1244-1258 https://doi.org/10.12341/jssms13155
PDF(637 KB)

208

Accesses

0

Citation

Detail

段落导航
相关文章

/