岭回归中基于广义交叉核实法的最优模型平均估计

喻达磊,饶炜东,尹潇潇

系统科学与数学 ›› 2018, Vol. 38 ›› Issue (6) : 652-661.

PDF(428 KB)
PDF(428 KB)
系统科学与数学 ›› 2018, Vol. 38 ›› Issue (6) : 652-661. DOI: 10.12341/jssms13408
论文

岭回归中基于广义交叉核实法的最优模型平均估计

    喻达磊1,饶炜东1,尹潇潇2
作者信息 +

Optimal Model Averaging Estimator in Ridge Regression Based on Generalized Cross Validation

    YU Dalei1 ,RAO Weidong1 ,YIN Xiaoxiao2
Author information +
文章历史 +

摘要

岭回归是一种常用的用于克服多重共线性的压缩估计方法. 文章在存在异方差的背景下, 考察了组合不同岭参数下岭估计量的模型平均方法, 并在广义交叉核实法的框架下构造了相应的权重选择准则. 当拟合模型的设定存在偏误时, 证明了基于广义交叉核实法的模型平均法可以给出渐近最优的预测. 此外, 使用蒙特卡洛模拟考察了所提出的模型平均方法在有限样本下的有效性. 最终, 使用 所提出的方法对一组乙炔反应工艺的数据进行了分析, 所得到的结论进一步表明, 模型平均法在实际数据分析工作中具有较高应用价值.

Abstract

Ridge regression is one of the most commonly used shrinkage methods for handling the problem of multicollinearity. In this paper, in the presence of heteroscedasticity, we consider the model averaging method for combining ridge estimators based on different ridge parameters. The corresponding weight choice method is proposed based on generalized cross validation. We show that when the fitting model is misspecified, the resulting model averaging estimator leads to the asymptotically optimal prediction. Monte-Carlo simulations are conducted to assess the effectiveness of the proposed method in finite sample setting. An application to the study concerning the acetylene process problem further supports the use of the model averaging method in practical situations.

关键词

岭回归 / 模型平均 / 广义交叉核实法 / 渐近最优性.

引用本文

导出引用
喻达磊 , 饶炜东 , 尹潇潇. 岭回归中基于广义交叉核实法的最优模型平均估计. 系统科学与数学, 2018, 38(6): 652-661. https://doi.org/10.12341/jssms13408
YU Dalei , RAO Weidong , YIN Xiaoxiao. Optimal Model Averaging Estimator in Ridge Regression Based on Generalized Cross Validation. Journal of Systems Science and Mathematical Sciences, 2018, 38(6): 652-661 https://doi.org/10.12341/jssms13408
PDF(428 KB)

470

Accesses

0

Citation

Detail

段落导航
相关文章

/