
带未知衰减观测率多传感器系统的自校正加权观测融合估计
Self-Tuning Weighted Measurement Fusion Estimation for Multi-Sensor Systems with Unknown Fading Measurement Rates
对带未知衰减观测率的多传感器线性离散时不变系统, 通过相关函数在线辨识不同传感器的衰减观测期望和方差, 将在线辨识的参数代入到最优加权观测融合滤波算法中得到自校正加权观测融合滤波算法. 分析了参数辨识的一致性和自校正加权观测融合滤波算法的收敛性. 仿真例子验证了算法的有效性.
For a multi-sensor linear discrete time-invariant system with unknown fading measurement rates, the expectations and variances of fading measurements from different sensors are identified online by correlation functions. The online identified parameters are substituted into the optimal weighted measurement fusion filtering algorithm to obtain the self-tuning weighted measurement fusion filtering algorithm. The consistence of identified parameters and the convergence of self-tuning weighted measurement fusion filtering algorithm are analyzed. A simulation example verifies the effectiveness of the proposed algorithms.
多传感器系统 / 衰减观测 / 相关函数 / 加权观测融合 / 自校正融合估计. {{custom_keyword}} /
/
〈 |
|
〉 |