碳排放权交易约束下供应链网络成员企业微分博弈分析

杨玉香,张宝友,孟丽君

系统科学与数学 ›› 2018, Vol. 38 ›› Issue (10) : 1172-1185.

PDF(1734 KB)
PDF(1734 KB)
系统科学与数学 ›› 2018, Vol. 38 ›› Issue (10) : 1172-1185. DOI: 10.12341/jssms13465
论文

碳排放权交易约束下供应链网络成员企业微分博弈分析

    杨玉香,张宝友,孟丽君
作者信息 +

Differential Game Analysis of Member Firms for Supply Chain Network Under Marketable Carbon Emission Permits

    YANG Yuxiang ,ZHANG Baoyou, MENG Lijun
Author information +
文章历史 +

摘要

考虑碳排放权交易下多个制造商和多个需求区域的供应链网络结构,从长期、动态的角度研究供应链网络成员企业在碳排放权交易约束下的决策行为,分析成员企业间的非合作竞争关系,构建基于微分变分不等式的连续时间动态模型,并将其转化为等价的非线性互补问题,在此基础上,提出逐步线性化求解方法.最后通过算例在整个规划期内分析不同的生产成本对各成员产品生产率、碳排放率、碳减排投资率、碳排放存量、碳排放许可数量及产品价格和许可证价格的影响,并分析环境成本的变化对制造商碳减排投资率的影响.

Abstract

A supply chain network including multi manufacturers and multi demand areas is developed. From a long term and dynamic perspective, we study decision behavior of member firms in supply chain network under marketable carbon emission permits. Non cooperative competition relationship of the member firms is analyzed. A continuous time dynamic model is developed based on differential variational inequality. We have shown that the differential variational inequality is equivalent to the problem of nonlinear complementary problem. A successive linearization algorithm is proposed. Finally, numerical examples are proposed. In the whole planning horizon, we analyze the impact of different production costs on production rates of product, carbon emission rates, investment rates of carbon abatement emission, carbon emission stocks, carbon emission permits, product prices, and permit prices. Specially, we analyze the impact of environmental costs on investment rates of carbon abatement emission of every manufacturer.

关键词

供应链网络 / 碳排放许可 / 微分博弈 / 微分变分不等式 / 非线性互补问题.

引用本文

导出引用
杨玉香 , 张宝友 , 孟丽君. 碳排放权交易约束下供应链网络成员企业微分博弈分析. 系统科学与数学, 2018, 38(10): 1172-1185. https://doi.org/10.12341/jssms13465
YANG Yuxiang , ZHANG Baoyou , MENG Lijun. Differential Game Analysis of Member Firms for Supply Chain Network Under Marketable Carbon Emission Permits. Journal of Systems Science and Mathematical Sciences, 2018, 38(10): 1172-1185 https://doi.org/10.12341/jssms13465
PDF(1734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/