轮式移动舞台机器人双模模型预测控制

倪洪杰,何德峰,俞立

系统科学与数学 ›› 2018, Vol. 38 ›› Issue (11) : 1229-1239.

PDF(565 KB)
PDF(565 KB)
系统科学与数学 ›› 2018, Vol. 38 ›› Issue (11) : 1229-1239. DOI: 10.12341/jssms13484
论文

轮式移动舞台机器人双模模型预测控制

    倪洪杰,何德峰,俞立
作者信息 +

Dual-Mode Model Predictive Control of Wheeled Mobile Stages Robots

    NI Hongjie ,HE Defeng ,YU Li
Author information +
文章历史 +

摘要

针对轮式移动舞台机器人的快速镇定和移动区域约束控制问题,提出一种快速双 模模型预测控制(MPC)算法. 考虑轮式移动舞台机器人的位姿约束和速度约束, 采用控 制Lyapunov函数概念和极坐标系模型设计模型预测控制算法. 利用移动舞台机器人与目标 的距离、瞄准角和方位角构造一个控制Lyapunov函数, 建立移动舞台机器人的一个解析 双模结构MPC控制器, 再引入自由变量, 参数化预测控制变量, 降低双模MPC在线优化计 算量. 在约束条件下, 建立了轮式移动舞台机器人闭环系统稳定性和MPC递推可行性理 论结果. 最后, 通过与常规MPC比较, 仿真验证所提算法的有效性和优越性.

Abstract

This paper proposes a fast dual-mode model predictive control (MPC) algorithm for the problems of rapid stabilization and constrained region control of wheeled mobile stage robots (WMSRs). For the pose and speed contraints of WMSRs, the MPC algorithm is designed using the concept of control Lyapunov functions and the model in polar coordinates of the WMSR. The CLF of the robot is constructed by the variables of distance between the robot with the goal, sighting angle and azimuthal angle. The CLF is then used to design an analytic dual-model MPC controller which paramertizes the predicted control variables by introducing some parameters of freedom. This reduces the online computational load of optimization of the dual-model MPC. The theoretical reuslts of closed-loop system of the robot, i.e., stability and recursive feasilibity of MPC, are established under the constraint conditions. Finally, an example of WMSRs is used to illustrate the effectiveness of the algorithm proposed here by comparing with conventional MPC.} \EKeywords{Mobile stages, wheeled mobile robots, model predictive control, constrained control, asymptotic stability.

引用本文

导出引用
倪洪杰 , 何德峰 , 俞立. 轮式移动舞台机器人双模模型预测控制. 系统科学与数学, 2018, 38(11): 1229-1239. https://doi.org/10.12341/jssms13484
NI Hongjie , HE Defeng , YU Li. Dual-Mode Model Predictive Control of Wheeled Mobile Stages Robots. Journal of Systems Science and Mathematical Sciences, 2018, 38(11): 1229-1239 https://doi.org/10.12341/jssms13484
PDF(565 KB)

617

Accesses

0

Citation

Detail

段落导航
相关文章

/