基于改进二进制人工蜂群的BP神经网络并行集成学习算法及其应用研究

贾凯,倪志伟,李敬明,陆玉佳,朱旭辉

系统科学与数学 ›› 2019, Vol. 39 ›› Issue (3) : 477-494.

PDF(2227 KB)
PDF(2227 KB)
系统科学与数学 ›› 2019, Vol. 39 ›› Issue (3) : 477-494. DOI: 10.12341/jssms13608
论文

基于改进二进制人工蜂群的BP神经网络并行集成学习算法及其应用研究

    贾凯1,倪志伟1,李敬明1,2,陆玉佳1,朱旭辉1
作者信息 +

Research on IBABC-BP Parallel Integration Learning Algorithm and Its Application

    JIA Kai1 ,NI Zhiwei1 ,LI Jingming 1,2 ,LU Yujia1 ,ZHU Xuhui1
Author information +
文章历史 +

摘要

BP神经网络算法具有寻优效率不高、易发生早熟且最终求解精度不够等特点, 针对以上问题, 文章提出一种基于改进二进制人工蜂群 算法(Improved Binary Artificial Bee Colony Algorithm)的BP神经网络并行集成学习算法(IBABC-BP).首先, 文章构建以高斯变异函数作为概率映射函数的离散二进制人工蜂群算法(IBABC), 分析证明了算法的有效性, 并通过在4个Benchmark标准测试函数上证明了其寻优精度和收敛速度较其他4 种改进人工蜂群算法均有大幅提高;其次, 将改进的二进制人工蜂群算法(IBABC)用于训练BP 神经网络, 设计了IBABC-BP并行集成学习算法;最后, 将IBABC-BP 算法用于雾霾评估预测, 以合肥地区的雾霾历史数据作为仿真数据.实验结果表明, IBABC-BP算法在寻优精度和收敛速度上较原始BP算法、人工蜂群ABC-BP 算法、遗传GA-BP 算法等算法有明显的提升, 可以有效地提高雾霾评估预测的准确性.

Abstract

BP neural network algorithm has the characteristics of slow learning speed, falling into the local optimum easily and the inaccurate operating result, and so on, in order to solve these problems, a parallel ensemble learning algorithm based on Improved Binary Artificial Bee Colony Algorithm (IBABC) and BP neural network is proposed. Firstly, a kind of improved Binary Artificial Bee Colony Algorithm which based on Gauss Variation Function as probability mapping function is proposed in this paper, then prove the effectiveness of the algorithm and verify the convergence speed and accuracy by four Benchmark functions. Secondly, the IBABC algorithm is used to train the BP Neural Network and construct a parallel integration learning algorithm of IBABC-BP. Finally, the IBABC-BP algorithm is applied to the haze assessment forecast, the experiment results based on haze data in Hefei indicate that the IBABC-BP algorithm is superior to BP algorithm、ABC-BP algorithm and GA-BP algorithm in terms of convergence speed and accuracy, the IBABC-BP algorithm can improve the accuracy of the haze assessment forecast efficiently.

关键词

改进二进制人工蜂群算法 / BP神经网络 / 高斯变异函数 / 雾霾评估预测.

引用本文

导出引用
贾凯 , 倪志伟 , 李敬明 , 陆玉佳 , 朱旭辉. 基于改进二进制人工蜂群的BP神经网络并行集成学习算法及其应用研究. 系统科学与数学, 2019, 39(3): 477-494. https://doi.org/10.12341/jssms13608
JIA Kai , NI Zhiwei , LI Jingming , LU Yujia1 , ZHU Xuhui. Research on IBABC-BP Parallel Integration Learning Algorithm and Its Application. Journal of Systems Science and Mathematical Sciences, 2019, 39(3): 477-494 https://doi.org/10.12341/jssms13608
PDF(2227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/