随机演化动态及其合作机制研究综述

王先甲,顾翠伶,赵金华,全吉

系统科学与数学 ›› 2019, Vol. 39 ›› Issue (10) : 1533-1552.

PDF(698 KB)
PDF(698 KB)
系统科学与数学 ›› 2019, Vol. 39 ›› Issue (10) : 1533-1552. DOI: 10.12341/jssms13701
论文

随机演化动态及其合作机制研究综述

    王先甲1,2,顾翠伶2,赵金华1,全吉3
作者信息 +

A Review of Stochastic Evolution Dynamics and Its Cooperative Mechanism

    WANG Xianjia 1,2 ,GU Cuiling2 ,ZHAO Jinhua1 ,QUAN Ji2
Author information +
文章历史 +

摘要

演化博弈论为解释如何促进和维持合作的问题提供了强大理论框架. 对于有限种群, 随机性起着重要的作用, 可通过随机演化博弈动态来研究策略的演化. 基于随机过程的有限种群的演化博弈动态中, 不同的策略更新规则导致不同的演化博弈动态过程. 该文旨在对有限种群中基于随机过程的演化博弈动态及其合作机制的研究进行综述, 并分析未来发展趋势. 首先对不同策略更新规则下的演化动态研究进行综述,主要包括~Moran~过程、Wright-Fisher~过程、Fermi~过程及愿景更新过程, 然后对演化博弈理论框架下促合作机制进行综述, 最后分析探讨有限种群中随机演化博弈动态未来的研究.

Abstract

Evolutionary game theory provides a powerful theoretical framework for how unrelated and selfish individuals promote and sustain cooperation. Randomness plays an important role in finite population and the evolutionary dynamics can be studied through stochastic processes. In the evolutionary game dynamics of finite population based on stochastic process, different strategy updating rules lead to different evolutionary game dynamic processes. The purpose of this paper is to summarize the research status on the dynamics of evolutionary games and cooperation mechanism based on stochastic processes in finite populations, and to analyze its future development trend. Firstly, the research on evolutionary dynamics under different strategy updating rules is reviewed, including the Moran process, Wright-Fisher process, Fermi process and aspiration-driven updating process, and then the cooperation mechanism under the framework of evolutionary game theory is reviewed. Finally, the future research on stochastic evolutionary game dynamics of finite population is analyzed and discussed.

关键词

随机演化博弈, Moran~过程,  / Wright-Fisher~过程, Fermi~过程, 合作机制.

引用本文

导出引用
王先甲 , 顾翠伶 , 赵金华 , 全吉. 随机演化动态及其合作机制研究综述. 系统科学与数学, 2019, 39(10): 1533-1552. https://doi.org/10.12341/jssms13701
WANG Xianjia , GU Cuiling , ZHAO Jinhua , QUAN Ji. A Review of Stochastic Evolution Dynamics and Its Cooperative Mechanism. Journal of Systems Science and Mathematical Sciences, 2019, 39(10): 1533-1552 https://doi.org/10.12341/jssms13701
PDF(698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/