偏正态混合效应模型参数的经验贝叶斯估计

叶仁道,张瑜

系统科学与数学 ›› 2019, Vol. 39 ›› Issue (11) : 1895-1908.

PDF(524 KB)
PDF(524 KB)
系统科学与数学 ›› 2019, Vol. 39 ›› Issue (11) : 1895-1908. DOI: 10.12341/jssms13751
论文

偏正态混合效应模型参数的经验贝叶斯估计

    叶仁道,张瑜
作者信息 +

Empirical Bayesian Estimation of Parameters in Skew-Normal Mixed Effects Models

    YE Rendao ,ZHANG Yu
Author information +
文章历史 +

摘要

针对偏正态混合效应模型, 研究模型固定效应和偏度参数的经验贝叶斯估计问题. 首先, 基于固定效应和偏度参数的先验分布及贝叶斯法则, 给出其后验分布. 进而, 综合运用极大似然估计方法和MCMC技术, 获得固定效应和偏度参数的经验贝叶斯估计及其算法. 模拟结果表明, 在均方误差意义下, 经验贝叶斯估计在大部分情况下优于由Nelder-Mead算法获得的极大似然估计. 最后, 将经验贝叶斯估计应用于中国长三角城市群人口增长的影响因素分析.

Abstract

In this study, the empirical Bayesian estimation of fixed effect and skewness parameter are discussed for the skew-normal mixed effects model. Based on the prior distribution of the parameters and Bayes law, the posterior distributions of the parameters are given. Furthermore, the empirical Bayesian estimates and algorithms of fixed effect and skewness parameter are obtained by using maximum likelihood estimation and MCMC technology. The simulation results show that the empirical Bayesian estimates are better than the maximum likelihood estimates obtained by the Nelder-Mead method in most cases in the sense of mean squared error. Finally, the empirical Bayesian estimation is applied to the analysis of the influencing factors of population growth in the Yangtze River Delta urban agglomeration in China.

关键词

偏正态分布 / 混合效应模型 / 经验贝叶斯估计 / MCMC.

引用本文

导出引用
叶仁道 , 张瑜. 偏正态混合效应模型参数的经验贝叶斯估计. 系统科学与数学, 2019, 39(11): 1895-1908. https://doi.org/10.12341/jssms13751
YE Rendao , ZHANG Yu. Empirical Bayesian Estimation of Parameters in Skew-Normal Mixed Effects Models. Journal of Systems Science and Mathematical Sciences, 2019, 39(11): 1895-1908 https://doi.org/10.12341/jssms13751
PDF(524 KB)

353

Accesses

0

Citation

Detail

段落导航
相关文章

/