• 论文 • 上一篇    

具有Allee效应及非线性扰动的随机单种群模型的平稳分布及灭绝性

陈贤礼   

  1. 山西财贸职业技术学院,太原  030031
  • 出版日期:2019-12-25 发布日期:2020-03-20

陈贤礼. 具有Allee效应及非线性扰动的随机单种群模型的平稳分布及灭绝性[J]. 系统科学与数学, 2019, 39(12): 2093-2104.

CHEN Xianli. Stationary Distribution and Extinction of a Stochastic Population Model with Allee Effect and Nonlinear Perturbation[J]. Journal of Systems Science and Mathematical Sciences, 2019, 39(12): 2093-2104.

Stationary Distribution and Extinction of a Stochastic Population Model with Allee Effect and Nonlinear Perturbation

Shanxi Vocational and Technical College of Finance and Trade, Taiyuan 030031   

  • Online:2019-12-25 Published:2020-03-20

研究一类具有Allee效应及非线性扰动的随机单种群模型的平稳分布及灭绝性. 首先证明模型全局正解的存在唯一性, 接着通过构造合适的Lyapunov函数给出 模型存在唯一平稳分布的充分条件, 其次讨论Allee效应及噪声强度如何影响种群动力学并给出种群灭绝的充分条件. 最后给出数值模拟来例证理论结果.

This paper investigates the stationary distribution and extinction of a stochastic population model with Allee effect and nonlinear perturbation. The author first proves the existence of global positive solution of the model. Then by constructing a suitable stochastic Lyapunov function, the author establishes sufficient conditions for the existence of an ergodic stationary distribution of the model. Then the author obtains sufficient conditions for extinction of the population in two cases. One is how Allee effect affects extermination of the population and the other is how noises affect extermination of the population. At last, some examples together with numerical simulations are provided to illustrate the analytical results. }

()
[1] 张荣,孙树林. 一类具有变消耗率的随机恒化器模型的渐近行为[J]. 系统科学与数学, 2020, 40(12): 2237-2247.
[2] 魏凤英,陈芳香. 具有饱和发生率的随机SIRS流行病模型的渐近行为[J]. 系统科学与数学, 2016, 36(12): 2444-2453.
[3] 徐立峰,张绍义. 不动点与Markov过程的稳定性[J]. 系统科学与数学, 2015, 35(2): 221-232.
[4] 李伯忍. 具有非线性扰动的线性多时变时滞系统的鲁棒镇定[J]. 系统科学与数学, 2014, 34(4): 392-401.
[5] 李伯忍;胥布工. 具有非线性扰动的线性多时变时滞系统的鲁棒稳定性[J]. 系统科学与数学, 2010, 30(7): 887-894.
[6] 唐应辉. 推广的多重休假$M^X/G/1$排队系统[J]. 系统科学与数学, 2005, 25(1): 39-049.
[7] 伍炯宇. 关于有ALLEE效应的单种群模型的周期行为[J]. 系统科学与数学, 1998, 18(2): 219-224.
阅读次数
全文


摘要