基于集成学习的在线高维投资组合策略

黄嵩,倪宣明,钱龙,张俊超

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (1) : 29-40.

PDF(610 KB)
PDF(610 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (1) : 29-40. DOI: 10.12341/jssms13796
论文

 基于集成学习的在线高维投资组合策略

    黄嵩,倪宣明,钱龙,张俊超
作者信息 +

Large-Dimensional Online Portfolio Strategy Based on Ensemble Learning

    HUANG Song ,NI Xuanming ,QIAN Long ,ZHANG Junchao
Author information +
文章历史 +

摘要

文章结合机器学习中的交叉验证、在线学习和集成学习方法, 对基于不同高维协方差估计量的投资策略权重进行动态组合, 以获得优于传统投资组合策略的样本外表现. 基于这一目标, 文章对机器学习中比较前沿的在线加权集成(online weighted ensemble, OWE) 算法的样本更新方式、学习模型和目标函数进行了替换和修改, 改进后的mixed-OWE算法能够更好地适用于多组合的动态混合策略投资. 通过数值模拟, 文章将mixed-OWE应用在基于二次效用目标函数的投资问题上, 结果表明其样本外表现优于传统静态方法. 随后, 文章进一步使用A股近10年的数据作为样本对mixed-OWE进行了全局最小方差组合投资, 经过一定的参数调整后, mixed-OWE策略实现的组合方差优于其成分组合以及等权重组合.

Abstract

To acquire better out-of-sample performance than traditional portfolio strategies, this paper mainly adopts machine learning techniques such as cross-validation, online learning and ensemble learning to dynamically combine different portfolio weights based on several large-dimensional covariance estimators. In order to achieve this goal, we select a state-of-art online weighted ensemble (OWE) algorithm in machine learning domain and adjust its way of updating data stream, learning models and objective function. The new mixed-OWE algorithm can be better used to perform investment based on multi-portfolio dynamic combination. Through numerical simulation, we adopt the mixed-OWE on solving a portfolio investment problem based on quadratic utility target function. The result shows that the out-of-sample performance of mixed-OWE is slightly better than traditional static methods. Then, we use real data of A-share over the last ten-years to test the performance of mixed-OWE and the result shows that after some parameter adjustments, it can outperform its component portfolios and 1/N portfolio.

关键词

在线学习 / 集成学习 / 投资组合 / 高维协方差估计量.

引用本文

导出引用
黄嵩 , 倪宣明 , 钱龙 , 张俊超.  基于集成学习的在线高维投资组合策略. 系统科学与数学, 2020, 40(1): 29-40. https://doi.org/10.12341/jssms13796
HUANG Song , NI Xuanming , QIAN Long , ZHANG Junchao. Large-Dimensional Online Portfolio Strategy Based on Ensemble Learning. Journal of Systems Science and Mathematical Sciences, 2020, 40(1): 29-40 https://doi.org/10.12341/jssms13796
PDF(610 KB)

460

Accesses

0

Citation

Detail

段落导航
相关文章

/