• 论文 • 上一篇    下一篇

一类具有自发行为的SIRI谣言传播模型研究

刘芳1,李明涛2   

  1. 1. 忻州师范学院数学系, 忻州   034000; 2. 太原理工大学数学学院,太原  030024
  • 出版日期:2020-07-25 发布日期:2020-09-23

刘芳,李明涛. 一类具有自发行为的SIRI谣言传播模型研究[J]. 系统科学与数学, 2020, 40(7): 1257-1269.

LIU Fang, LI Mingtao. Research on SIRI Rumor Spreading Model with Spontaneous Behavior[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(7): 1257-1269.

Research on SIRI Rumor Spreading Model with Spontaneous Behavior

LIU Fang1, LI Mingtao2   

  1. 1. Department of Mathematics, Xinzhou Teachers University, Xinzhou 034000; 2. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024
  • Online:2020-07-25 Published:2020-09-23

基于传染病动力学理论, 建立了具有自发行为的SIRI 谣言传播微分方程动 力学模型, 通过非负平衡点的存在性给出影响谣言传播效果的阈值. 利用Jacobian矩阵和 Bendixson-Dulac判别法分析了非负平衡点的全局稳定性, 提出了影响谣言传播的主要因素 及治理谣言的策略. 理论证明, 自发行为存在是谣言传播的必要条件, 当阈值大于1时, 谣 言持续, 否则谣言灭绝. 数值仿真为理论结果提供了支持. 复杂的动力学性质表明, 该模型对参 数的变化非常敏感, 对控制和治理谣言传播起了重要作用.

Based on the theory of epidemic dynamics, a dynamic SIRI model of differential equation about rumor spreading with spontaneous behavior was established. By analyze the existence of non-negative equilibria, the threshold which effect the rumor spreading result is determined. Jacobian matrix and bendixson-dulac discriminant method were used to analyze the stability of the non-negative equilibria. Furthermore, the main factors affecting the rumor spreading and the strategies in order to control rumor spreading are given. The theoretical analysis shows that the existence of spontaneous behavior is a necessary condition for rumor spreading. If the threshold is more than 1, the rumor will last, otherwise the rumor will die out. Numerical simulations are provided to support the theoretical results. The complicated dynamics properties exhibit that the model is very sensitive to variation of parameters, which play an important role on controlling and administering the rumor spreading.

()
[1] 张德金, 向淑文, 邓喜才, 杨彦龙. 约束图像拓扑下的向量值拟变分不等式解集的通有稳定性[J]. 系统科学与数学, 2021, 41(1): 115-125.
[2] 傅金波, 陈兰荪. 具有免疫应答和吸收效应的病毒感染模型分析[J]. 系统科学与数学, 2021, 41(1): 280-290.
[3] 高志方,刘亚楠,彭定洪. 云制造稳定性控制的区间犹豫模糊控制图方法[J]. 系统科学与数学, 2019, 39(7): 1017-1030.
[4] 杨阳,田野,刘智,陈国陆. 真三维显示系统的Roesser模型及其性能分析[J]. 系统科学与数学, 2019, 39(4): 534-544.
[5] 彭树霞,许跟起. 带有时滞控制的一维热传导方程的参数化控制器设计与稳定性研究[J]. 系统科学与数学, 2019, 39(1): 1-14.
[6] 刘秀芳,许跟起. 内部输入带不同时滞的Tomishenko梁的指数稳定性[J]. 系统科学与数学, 2018, 38(2): 131-146.
[7] 倪洪杰,何德峰,俞立. 轮式移动舞台机器人双模模型预测控制[J]. 系统科学与数学, 2018, 38(11): 1229-1239.
[8] 贾彦娜. 自抗扰控制处理边界带有干扰的具有尖端质量的 Timoshenko 梁方程的稳定性[J]. 系统科学与数学, 2018, 38(11): 1252-1266.
[9] 张亚明,苏妍嫄,刘海鸥. 双重社会强化谣言传播模型及稳定性分析[J]. 系统科学与数学, 2017, 37(9): 1960-1975.
[10] 孙传成,邱志鹏,杨晓敏. 一类具有媒体影响的媒介传染病模型的分析[J]. 系统科学与数学, 2017, 37(9): 2028-2038.
[11] 胡晓丽,伏升茂. 带Lotka-Volterra互惠源的多种群趋化模型的稳定性[J]. 系统科学与数学, 2017, 37(6): 1541-1554.
[12] 吴凡,赵勇,陈阳. 一个基于夹角测度的群决策结果稳定性的定量分析方法研究[J]. 系统科学与数学, 2017, 37(4): 1063-1071.
[13] 陈申申,华静,张发祥,李医民. 具有Holling II型改造率的土地动力学模型分析[J]. 系统科学与数学, 2017, 37(3): 819-827.
[14] 何志龙,聂麟飞. 具有状态依赖脉冲控制的害虫管理SI模型的动力学性质[J]. 系统科学与数学, 2017, 37(11): 2163-2177.
[15] 何泽荣,吴鹏. 模拟弹性增长的非线性尺度结构种群模型分析[J]. 系统科学与数学, 2017, 37(1): 289-303.
阅读次数
全文


摘要