• 论文 •

### 机队运力配置和USApHMP问题的联合决策模型与算法

1. 1. 西南财经大学统计学院,  成都 611130; 2. 中国民航飞行学院机场工程与运输管理学院,  广汉 618307; 3. 中国民航飞行学院飞行技术与飞行安全科研基地,  广汉 618307
• 出版日期:2020-08-25 发布日期:2020-09-24

ZHANG Peiwen, WU Jiang, WANG Yu, SUN Hong. A Joint Decision Model and Algorithm for Fleet Capacity and USApHMP Problem[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(8): 1432-1446.

### A Joint Decision Model and Algorithm for Fleet Capacity and USApHMP Problem

ZHANG Peiwen 1,2 ,WU Jiang1 ,WANG Yu2 ,SUN Hong3

1. 1. School of Statistics, Sothwestern University of Finance and Economics, Chengdu 611130; 2. School of Airport and Transportation Management, Civil Aviation Flight University of China, Guanghan 618307; 3. Scientific Base of Flying Technology and Safety, Civil Aviation Flight University of China, Guanghan 618307
• Online:2020-08-25 Published:2020-09-24

In order to solve the problem of USApHMP (uncapacitated single allocation $p$-hub location) method neglecting the influence of airline fleet capacity allocation decision on unit passenger flow cost. The location of the hub airport, the connection between hub and non-hub, the selection of the route type and its frequency were regarded as decision variables．The limitations including the passenger demand on each itinerary, available flying frequency on each flight leg, and available block time of each fleet type were considered as constraints. A joint decision mathematical model of fleet route allocation, frequency selection and USApHMP problem was constructed, whose optimization objective was to minimize fleet capacity allocation cost and hub setting cost of airline companies, and which can be solved by a genetic algorithm. The result of example analysis shows that: Take 4 models, 10 cities and 90 pair-cities into consideration, and compared with the traditional hub route network design method, the total network cost of the joint decision model is reduced by 9.39$\%$, and the route maximum flight frequency is an important factor affecting the hub network design.

()
 [1] 张小英, 王平, 冯红银萍. 常微分方程-薛定谔方程耦合系统的输出反馈镇定[J]. 系统科学与数学, 2021, 41(4): 887-897. [2] 陈振杰, 傅勤, 郁鹏飞, 张丹. 一类四阶抛物型偏微分多智能体系统的协调控制[J]. 系统科学与数学, 2021, 41(4): 898-912. [3] 杨贵军, 吴洁琼. Pareto $\pi$ps 抽样的~Horvitz-Thompson 估计量方差研究[J]. 系统科学与数学, 2021, 41(4): 1150-1163. [4] 郭海湘, 赵佳佳, 黎金玲. 滑坡灾害临时避难所区位布局规划方法[J]. 系统科学与数学, 2021, 41(2): 401-419. [5] 张俊芳，周礼刚，金自强. 基于Pythagorean犹豫模糊熵和交叉熵的绩效评价方法[J]. 系统科学与数学, 2021, 41(2): 436-448. [6] 陈宇峰，朱志韬，屈放. 国际油价、人民币汇率与国内金价的非对称溢出及动态传 导机制 ------ 基于三元VAR-Asymmetric BEKK (DCC)-GARCH (1, 1)模型[J]. 系统科学与数学, 2021, 41(2): 449-465. [7] 吴红星，程国飞，王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究[J]. 系统科学与数学, 2020, 40(9): 1539-1549. [8] 陆文星，戴一茹，李楚，李克卿. 基于改进PSO-BP神经网络的旅游客流量预测方法[J]. 系统科学与数学, 2020, 40(8): 1407-1419. [9] 焦建军，陈兰荪，李利梅. 污染喀斯特环境下具瞬时与非瞬时脉冲效应的单种群动力学模型[J]. 系统科学与数学, 2020, 40(7): 1286-1296. [10] 张大斌，蔡超敏，凌立文，陈善盈. 基于CEEMD与GA-SVR的猪肉价格集成预测模型[J]. 系统科学与数学, 2020, 40(6): 1061-1073. [11] 崔春生，王雪，李文龙. 基于用户在线评论的旅游景点推荐算法研究[J]. 系统科学与数学, 2020, 40(6): 1103-1116. [12] 赵峰，王淼，高峰阳. 基于改进NSGA-II算法的次同步附加阻尼控制器的优化设计[J]. 系统科学与数学, 2020, 40(5): 751-760. [13] 张玉州，徐廷政，郑军帅. 基于混合遗传算法的紧急程度不确定应急物流问题求解[J]. 系统科学与数学, 2020, 40(4): 714-728. [14] 李振鹏，黄帅. 基于LDA主题模型的网络舆情研究[J]. 系统科学与数学, 2020, 40(3): 434-447. [15] 李继红，赵仕静. 不同价格水平下排队策略研究[J]. 系统科学与数学, 2020, 40(3): 510-520.