细菌种群增生中Rotenberg模型解的渐近稳定性研究

吴红星,程国飞,王胜华

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (9) : 1539-1549.

PDF(358 KB)
PDF(358 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (9) : 1539-1549. DOI: 10.12341/jssms13963
论文

细菌种群增生中Rotenberg模型解的渐近稳定性研究

    吴红星,程国飞,王胜华
作者信息 +

Asymptotic Stability of Rotenberg Model Solutions in Bacterial Population Growth

    WU Hongxing, CHENG Guofei, WANG Shenghua
Author information +
文章历史 +

摘要

Lp(1<p<)空间中, 用线性算子理论研究了细菌种群增生中具一般边界条件的Rotenberg模型, 采用比较算子和豫解算子等方法证明了算子(λIBH)1K的紧性以及算子 Imλ∣∥(λIBH)1[K(λIBH)1]mK(λIAH)1(|Imλ|+)在某带域中 的有界性, 得到了该相应迁移算子谱存在性和相应迁移方程解的渐近稳定性等结果.

Abstract

In this paper, the Rotenberg model with general boundary conditions in bacterial population growth is discussed by using linear operator theory in Lp(1<p<) space. Compact operator (λIBH)1K and boundedness of operator |Imλ∣∥[(λIBH)1K(λIBH)1]mK(λIAH)1(|Imλ|+) in a certain band domain are proved by using comparison operator and resolving operator. The results of spectral existence of the corresponding migration operator and asymptotic stability of the solution of the corresponding transport equation are obtained.

关键词

细菌种群 /   / Rotenberg模型 /   / 迁移方程 /   / 渐近稳定性

引用本文

导出引用
吴红星 , 程国飞 , 王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究. 系统科学与数学, 2020, 40(9): 1539-1549. https://doi.org/10.12341/jssms13963
WU Hongxing , CHENG Guofei , WANG Shenghua. Asymptotic Stability of Rotenberg Model Solutions in Bacterial Population Growth. Journal of Systems Science and Mathematical Sciences, 2020, 40(9): 1539-1549 https://doi.org/10.12341/jssms13963
PDF(358 KB)

229

Accesses

0

Citation

Detail

段落导航
相关文章

/