基于两型博弈的双边链路形成策略优化研究

梁开荣,李登峰,余高峰

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (9) : 1550-1563.

PDF(565 KB)
PDF(565 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (9) : 1550-1563. DOI: 10.12341/jssms13964
论文

 基于两型博弈的双边链路形成策略优化研究

    梁开荣1,李登峰2,余高峰1
作者信息 +

Research on Strategy Optimization of Bilateral Link Formation Based on Biform Games

    LIANG Kairong1, LI Dengfeng2 ,YU Gaofeng1
Author information +
文章历史 +

摘要

文章主要利用非合作-合作两型博弈方法研究网络安全访问 链路形成策略优化问题. 首先, 在第一阶段(非合作博弈), 构建网络中所有 局中人(即节点)的策略组合, 形成第二阶段(合作博弈)的竞争局势. 其次, 在 第二阶段(合作博弈), 利用Shapley值求解第一阶段各个策略局势下每个合作博弈 的局中人分配值, 从而构建了第一阶段的非合作博弈, 进而求解其纯策略纳什均衡 解, 据此求得基于两型博弈的整个双边链路形成的最优策略选择. 最后, 通过数值 实例验证了所建模型与方法的有效性、可应用性, 可为网络安全访问链接、社会网络 等优化设计问题提供新的解决途径.

Abstract

This paper mainly studies the problem of network security access link formation strategy optimization by using the biform game (also known as non-cooperative-cooperative game) method. Firstly, in the first phase (non-cooperative game), the strategy combinations of all players (i.e., nodes) in the network are constructed to form competitive situations in the second phase (cooperative game). Secondly, in the second stage (cooperative game), the Shapley value is used to solve players' distribution values of each cooperative game under each strategy situation in the first stage. Thus, we construct the first-stage non-cooperative game and then obtain the pure Nash equilibrium strategies. Accordingly, the Nash equilibrium solutions are the optimal strategy choices for the entire bilateral link formation based on the biform game. Finally, a numerical example is used to verify the validity and applicability of the built models and methods, which can provide a new solution to optimization design problems such as network security access links and social networks.

关键词

双边链路 / 非合作博弈 / 合作博弈 / 非合作-合作两型博弈 / Shapley值.

引用本文

导出引用
梁开荣 , 李登峰 , 余高峰.  基于两型博弈的双边链路形成策略优化研究. 系统科学与数学, 2020, 40(9): 1550-1563. https://doi.org/10.12341/jssms13964
LIANG Kairong , LI Dengfeng , YU Gaofeng. Research on Strategy Optimization of Bilateral Link Formation Based on Biform Games. Journal of Systems Science and Mathematical Sciences, 2020, 40(9): 1550-1563 https://doi.org/10.12341/jssms13964
PDF(565 KB)

Accesses

Citation

Detail

段落导航
相关文章

/