• 论文 • 上一篇    下一篇

协变量有测量误差时Tobit回归模型的估计

牛娟1,谢田发1,郭媛媛2,孙志华2,3   

  1. 1. 北 京工业大学理学部, 北京 100124; 2.中国科学院大学数学科学学院,北京 100049;3. 中国 科学院大数据挖掘与知识管理重点实验室,北京 100049
  • 出版日期:2020-09-25 发布日期:2020-11-16

牛娟,谢田发,郭媛媛,孙志华. 协变量有测量误差时Tobit回归模型的估计[J]. 系统科学与数学, 2020, 40(9): 1672-1686.

NIU Juan, XIE Tianfa, GUO Yuanyuan,SUN Zhihua. Estimation of Tobit Regression Model When Covariates Are Measured With Errors[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(9): 1672-1686.

Estimation of Tobit Regression Model When Covariates Are Measured With Errors

NIU Juan1 ,XIE Tianfa1 ,GUO Yuanyuan2 ,SUN Zhihua 2,3   

  1. 1.Faculty of Science, Beijing University of Technology, Beijing 100124; 2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049; 3. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049
  • Online:2020-09-25 Published:2020-11-16

文章考虑协变量有测量误差时参数\,Tobit\,模型的估计问题.文章所提方法 不需要假定测量误差模型的结构, 不需要对测量误差变量的方差做假定, 也不需要有重复 观测的数据. 测量误差的矫正通过借助工具变量来实现. 首先利用非参数核光滑方法得到真 实观测变量的估计, 然后用这个估计替代没有观察到的真实变量来处理测量误差. 这样, 模型的回归系数就可以利用校正的最小二乘方法来估计. 文章给出了具体的算法, 证明了 回归模型的参数估计的渐近正态性. 数值模拟结果表明文章提出的校正测量误差的方法比直 接使用有测量误差数据的朴素方法有更好的有限样本性质.

In this paper, we mainly consider the estimation of the Tobit model when the covariates are measured with the errors. It is unnecessary to assume the structure of the measurement error model or the known error variance for the proposed method. At the same time, the repeated measurements data are not required. With the help of the auxiliary variable, an estimator of the true variable can be obtained by applying the local smoothing method. The true variables are replaced by their estimators and then an estimator of the regression coefficient can be defined via minimizing the corrected least squares objective function. An algorithm is presented to compute the proposed estimator and the asymptotic normality of the proposed estimator is acquired. The numerical simulation studies are conducted, which show that the proposed method performs better than the naive method. The proposed method is employed to analyze a revised real data of Duchenne Muscular Dystrophy.

()
[1] 黄爱洁, 陈志翔. 糖尿病血糖调节自抗扰控制器设计[J]. 系统科学与数学, 2021, 41(4): 913-926.
[2] 王雯, 王玥, 王文慧, 肖志华. 基于交叉Gram矩阵低秩分解的非对称线性系统的模型降阶[J]. 系统科学与数学, 2021, 41(4): 926-938.
[3] 叶子诚, 闫桂英. 基于图模型的关键词提取算法研究[J]. 系统科学与数学, 2021, 41(4): 967-975.
[4] 乔鸽, 周建红, 李新民. 广义线性模型下模型平均的比较研究[J]. 系统科学与数学, 2021, 41(4): 1164-1180.
[5] 余世明, 李壮, 陈龙, 何德峰. 可扩展非线性异构车队系统分布式模型预测控制[J]. 系统科学与数学, 2021, 41(3): 602-614.
[6] 黄佩, 周少波. 时滞随机SIS传染病模型[J]. 系统科学与数学, 2021, 41(3): 615-626.
[7] 侯胜杰, 关忠诚, 董雪璠. 基于熵和CVaR的多目标投资组合模型及实证研究[J]. 系统科学与数学, 2021, 41(3): 640-652.
[8] 白娟娟, 师荣蓉. 基于广义已实现测度的中国股市波动预测与 VaR 度量[J]. 系统科学与数学, 2021, 41(3): 653-666.
[9] 崔泽欣, 王婵, 张欣, 谢启伟. 两阶段DEA绩效评价及其分摊模型------以全运会为例[J]. 系统科学与数学, 2021, 41(3): 667-687.
[10] 林树浩, 郭永江. 两阶段下批发商对于策略型顾客的最优定价和库存管理[J]. 系统科学与数学, 2021, 41(3): 788-801.
[11] 杨青, 孙晓伟. 带信息观测的与时间相关协变量的面板计数数据分析[J]. 系统科学与数学, 2021, 41(3): 865-874.
[12] 夏炎, 姚晔, 蒋茂荣, 范英. 房贷利息抵扣个人所得税政策的价格影响与收入分配效应研究[J]. 系统科学与数学, 2021, 41(2): 325-343.
[13] 李铮,熊熊,牟擎天,周炜星. 基于对数周期幂律奇异性模型的资产价格泡沫预测[J]. 系统科学与数学, 2021, 41(2): 361-372.
[14] 郭海湘, 赵佳佳, 黎金玲. 滑坡灾害临时避难所区位布局规划方法[J]. 系统科学与数学, 2021, 41(2): 401-419.
[15] 陈宇峰,朱志韬,屈放. 国际油价、人民币汇率与国内金价的非对称溢出及动态传 导机制 ------ 基于三元VAR-Asymmetric BEKK (DCC)-GARCH (1, 1)模型[J]. 系统科学与数学, 2021, 41(2): 449-465.
阅读次数
全文


摘要