两阶段波动价格销售下的最优订购策略研究

郑敏超,孟志青

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (11) : 1918-1934.

PDF(818 KB)
PDF(818 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (11) : 1918-1934. DOI: 10.12341/jssms14010
论文

 两阶段波动价格销售下的最优订购策略研究

    郑敏超,孟志青
作者信息 +

Research on Two-Level Price-Fluctuation Ordering Problem

    ZHENG Minchao, MENG Zhiqing
Author information +
文章历史 +

摘要

零售价波动销售现象的普遍存在以及需求的不确定性使得零售商无法准确制定订购策略, 对其利润带来了较大的影响. 文章建立了两阶段波动价格销 售下的订购模型, 以期望利润最大化为目标, 导出了最优订购量的解析表达式, 并证明了解的存在性和唯一性. 建立了离散化情形下的订购模型, 给出了离散价格和需求下近似最优订购策略的求解算法并证明了算法的收敛性. 结果表明: 两阶段波动价格销售时, 零售商应采取模型得到的最优订购策略; 当零售价波动幅度增加, 并超过某一阈值时, 最优订购量随着价格波动幅度的增加而快速减小; 最优订购量随着需求波动性的增加而减小; 在采用两阶段波动价格销售时, 零售商需尽可能在第一阶段卖出更多的商品, 而非打折后卖出, 从而增加利润.

Abstract

Retail price fluctuations, as well as uncertainties in demand, may lead to difficulties in deciding order quantities for retailers. This paper establishes an ordering model under two-stage price-fluctuation sales and derives the analytical expression of the optimal order quantity. An algorithm is given for solving the approximate optimal order quantity for the discrete model, and the convergence of the algorithm is proved. Through the investigation on the sales data of a man's T-shirt, Monte Carlo simulation is used to get enough price and demand random number pairs, so as to carry out simulation experiments. The results show that when price fluctuation is small, the retailer's optimal ordering strategy is relatively stable. However, when the retail price fluctuation exceeds a certain threshold, the retailer should reduce the optimal order quantity appropriately, so as to obtain higher profits; the approximate optimal order quantity decreases with the increase of the uncertainty of demand. The retailer should sell more products at the normal stage, thereby increasing profits under two-stage price fluctuation sales.

关键词

两阶段零售价波动销售 / 需求不确定 / 最优订购量 / 报童模型 / Copula 函数.

引用本文

导出引用
郑敏超 , 孟志青.  两阶段波动价格销售下的最优订购策略研究. 系统科学与数学, 2020, 40(11): 1918-1934. https://doi.org/10.12341/jssms14010
ZHENG Minchao , MENG Zhiqing. Research on Two-Level Price-Fluctuation Ordering Problem. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 1918-1934 https://doi.org/10.12341/jssms14010
PDF(818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/