反对称矩阵谱的可信计算

李喆,王学清

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (11) : 2161-2171.

PDF(363 KB)
PDF(363 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (11) : 2161-2171. DOI: 10.12341/jssms14026
论文

反对称矩阵谱的可信计算

    李喆,王学清
作者信息 +

The Verification of  the Spectra of the Skew-Symmetric Matrix

    LI Zhe ,WANG Xueqing
Author information +
文章历史 +

摘要

文章主要研究反对称矩阵谱的可信计算. 给定反对称矩阵, 分别利用\,Rump\,区间牛顿法和\,Kantorovich\,定理, 设计算法输出其高精度近似谱和可信误差界. 算法保证在误差界范围内, 存在一反对称矩阵, 该反对称矩阵的精确谱为输出的给定矩阵其高精度近似谱. 算例结果表明, 基于\,Kantorovich\,定理的算法和基于\,Rump\,区间牛顿迭代的算法输出的误差界基本相等.

Abstract

This paper mainly investigates the verification of the spectra of the skew-symmetric matrix. Given a skew-symmetric matrix, we design two algorithms to compute its high-precision approximate spectra and verified error bound by Rump's interval Newton method and Kantorovich theorem. These algorithms guarantee that there exists a skew-symmetric matrix within computed error bound, whose exact spectra is the computed high-precision approximate spectra of the given matrix. The examples illustrate that the error bounds computed by these two algorithms are equal.

关键词

反对称矩阵 / / 可信验证.

引用本文

导出引用
李喆 , 王学清. 反对称矩阵谱的可信计算. 系统科学与数学, 2020, 40(11): 2161-2171. https://doi.org/10.12341/jssms14026
LI Zhe , WANG Xueqing. The Verification of  the Spectra of the Skew-Symmetric Matrix. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 2161-2171 https://doi.org/10.12341/jssms14026
PDF(363 KB)

347

Accesses

0

Citation

Detail

段落导航
相关文章

/