
基于类Pearson综合相关系数的概率语言TOPSIS多属性决策方法
A Pearson-Like Synthetic Correlation-Based TOPSIS Multiple Attribute Decision-Making Approach for Probabilistic Linguistic Term Information
概率语言术语集(PLTS)包含了语言术语信息及其相应的概率信息, 使得原始决 策信息得到充分利用, 大大提高了语言术语多属性决策的科学性. 文章研究了一种基于 概率语言术语集类Pearson 综合相关系数的TOPSIS多属性决策方法. 首先考虑了PLTSs的3个特征因素:均值、方差和长度, 然后基于传统Pearson 相关系数的思想, 提出了一种新的概率语言术语集类Pearson综合相关系数, 其 特征是可从完整性、分布情况和犹豫性3个方面描述PLTSs, 且取值大小介于区间
The probabilistic linguistic term set (PLTS) contains linguistic term information and corresponding probabilistic information, which makes full use of the original decision-making information and greatly improves the scientificity of linguistic terms multiple attribute decision-making. Therefore, we develop a PLTS Pearson-like synthetic correlation-based TOPSIS approach in this paper for dealing with multiple attribute decision-making (MADM) problems. Three characteristic factors of PLTS: The mean, the variance and the length are firstly considered, and based on the traditional Pearson correlation coefficient, a novel concept called PLTS Pearson-like synthetic correlation coefficient is defined, whose significant features include two aspects: It can express the integrality, the distribution and the hesitance of the PLTSs and lies in the interval
概率语言术语集 / TOPSIS法 / 相关系数 / 多属性决策. {{custom_keyword}} /
/
〈 |
|
〉 |