• 论文 • 上一篇    下一篇

基于采样区间分割的线性系统稳定准则

练红海1,覃事刚1,肖伸平2,肖会芹2   

  1. 1. 湖南电气职业技术学院风能工程学院, 湘潭 411101; 2. 湖南工业大学电气与信息工程学院, 株洲 412008
  • 出版日期:2021-02-25 发布日期:2021-04-19

练红海,覃事刚,肖伸平,肖会芹. 基于采样区间分割的线性系统稳定准则[J]. 系统科学与数学, 2021, 41(2): 310-324.

LIAN Honghai,QIN Shigang, XIAO Shenping, XIAO Huiqin. Stability Criteria of Linear Systems Based on Sampled-Interval Fragmentation Approach[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(2): 310-324.

Stability Criteria of Linear Systems Based on Sampled-Interval Fragmentation Approach

LIAN Honghai1 ,QIN Shigang1 ,XIAO Shenping2 ,XIAO Huiqin 2   

  1. 1. School of Wind Energy Engineering, Hunan Electrical College of Technology, Xiangtan 411101; 2. School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008)
  • Online:2021-02-25 Published:2021-04-19

针对具有网络时延的线性采样控制系统的稳定性问题, 基于分割后的采样区间和状态信息, 建立了新的双边采样区间依赖闭环Lyapunov泛函. 然后, 在Lyapunov泛函导数中引入分割后的系统状态方程, 并应用2阶Bessel-Legendre 不等式和自由矩阵不等式估计泛函导数中的积分项, 导出了低保守性的采样控制系统稳定性准则. 最后, 通过3个例子验证了提出方法的有效性和优越性.

The paper aims at the stability of linear sampled-data control systems with network-induced delays. A new two-side sampled-interval-dependent looped Lyapunov functional is established based on the sampled-interval and system state of partition. Then, By introducing system state equation and using 2-order Bessel-Legendre inequality and free-matrix-based inequality to estimate single integral term in the derivative of Lyapunov functional, some less conservative stability criterion are derived for sampled-data control systems. Finally, two examples are provided to verify the validity and superiority of the proposed methods.

()
[1] 张德金,向淑文,邓喜才,杨彦龙. 约束图像拓扑下的向量值拟变分不等式解集的通有稳定性[J]. 系统科学与数学, 2021, 41(1): 115-125.
[2] 傅金波,陈兰荪. 具有免疫应答和吸收效应的病毒感染模型分析[J]. 系统科学与数学, 2021, 41(1): 280-290.
[3] 吴红星,程国飞,王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究[J]. 系统科学与数学, 2020, 40(9): 1539-1549.
[4] 杨洋,赵晓冬. 偏好序阈值约束下的三边单向非循环稳定匹配[J]. 系统科学与数学, 2020, 40(8): 1420-1431.
[5] 刘芳,李明涛. 一类具有自发行为的SIRI谣言传播模型研究[J]. 系统科学与数学, 2020, 40(7): 1257-1269.
[6] 练红海,肖伸平,邓鹏. 采样控制系统的稳定性分析新方法[J]. 系统科学与数学, 2020, 40(5): 783-796.
[7] 胡鑫,黄迟. 具有随机脉冲的布尔控制网络的集合稳定性研究[J]. 系统科学与数学, 2020, 40(4): 587-598.
[8] 吴军,郝伟怡,张天星,袁文燕,徐广姝. 基于演化博弈的企业合作创新策略研究[J]. 系统科学与数学, 2020, 40(10): 1766-1776.
[9] 邓鹏,练红海,肖伸平,刘万太,李谟发.  考虑时滞的采样控制系统稳定性分析[J]. 系统科学与数学, 2019, 39(9): 1347-1360.
[10] 高志方,刘亚楠,彭定洪. 云制造稳定性控制的区间犹豫模糊控制图方法[J]. 系统科学与数学, 2019, 39(7): 1017-1030.
[11] 常路,单梁,徐思远,李军. T型行人流通道建模及滑模控制方法[J]. 系统科学与数学, 2019, 39(5): 691-702.
[12] 杨阳,田野,刘智,陈国陆. 真三维显示系统的Roesser模型及其性能分析[J]. 系统科学与数学, 2019, 39(4): 534-544.
[13] 张发明,华文举,李玉茹. 几种综合评价方法的稳定性分析[J]. 系统科学与数学, 2019, 39(4): 595-610.
[14] 彭树霞,许跟起. 带有时滞控制的一维热传导方程的参数化控制器设计与稳定性研究[J]. 系统科学与数学, 2019, 39(1): 1-14.
[15] 刘秀芳,许跟起. 内部输入带不同时滞的Tomishenko梁的指数稳定性[J]. 系统科学与数学, 2018, 38(2): 131-146.
阅读次数
全文


摘要