基于熵和CVaR的多目标投资组合模型及实证研究

侯胜杰, 关忠诚, 董雪璠

系统科学与数学 ›› 2021, Vol. 41 ›› Issue (3) : 640-652.

PDF(2299 KB)
PDF(2299 KB)
系统科学与数学 ›› 2021, Vol. 41 ›› Issue (3) : 640-652. DOI: 10.12341/jssms20203

基于熵和CVaR的多目标投资组合模型及实证研究

    侯胜杰1,2,关忠诚1,2,董雪璠3
作者信息 +

A Multi-Objective Portfolio Model Based on Entropy and CVaR and Empirical Study

    HOU Shengjie1,2 ,GUAN Zhongcheng1,2 ,DONG Xuefan3
Author information +
文章历史 +

摘要

股票组合的选取以及对风险的度量在投资过程中极为 重要. 基于熵模型和CVaR风险度量方法, 文章提出了一种新的多目 标投资组合优化模型, 并利用模糊集理论和粒子群算法对模型进行求解. 同时, 通过深圳综合指数、中小板综合指数和上证180指数的实际股票数据进行实证分析, 结果表明与其他经典投资组合模型相比, 文章所提出的模型在Sharpe比率、平均绝对偏差比、调整后的偏度Sharpe比率等评估指标中表现得更好, 同时具有更高的稳定性. 文章所得结论为丰富现有的投资组合理论基础做出了一定的贡献.

Abstract

The selection of stock portfolio and the measurement of risk are of great significance in investments. Based on the entropy model and the CVaR function, this paper proposes a new multi-objective portfolio optimization model. In addition, a combination of fuzzy set theory and particle swarm optimization algorithm is employed to solve the model. By using the data of stocks included by the Shenzhen Composite index, SME composite index, and SSE 180 Index, a comparative empirical analysis is carried out. Five assessment metrics, including but not limited to Sharpe Ratio, Mean Absolute Deviation Ratio, Adjusted Skewness Sharpe Ratio and Farinelli and Tibiletti Ratio are used to evaluate the performane of the model. The results show that the proposed model has better performance in both utility and stability compared to other existing models, namely, Mean-Variance-Skewness Model, Entropy-Entropy Model and Entropy-Entropy-Skewness Model. The conclusion of this paper has made some contribution to enrich the current knowledge of portfolio theory.

关键词

熵模型, 投资组合, CVaR, 模糊集理论, 粒子群算法

引用本文

导出引用
侯胜杰, 关忠诚, 董雪璠. 基于熵和CVaR的多目标投资组合模型及实证研究. 系统科学与数学, 2021, 41(3): 640-652. https://doi.org/10.12341/jssms20203
HOU Shengjie, GUAN Zhongcheng, DONG Xuefan. A Multi-Objective Portfolio Model Based on Entropy and CVaR and Empirical Study. Journal of Systems Science and Mathematical Sciences, 2021, 41(3): 640-652 https://doi.org/10.12341/jssms20203
PDF(2299 KB)

481

Accesses

0

Citation

Detail

段落导航
相关文章

/