具有时滞概率分布的电力系统负荷频率稳定性分析

罗小丽, 戴璐, 练红海, 李谟发, 邓鹏

系统科学与数学 ›› 2021, Vol. 41 ›› Issue (5) : 1245-1255.

PDF(491 KB)
PDF(491 KB)
系统科学与数学 ›› 2021, Vol. 41 ›› Issue (5) : 1245-1255. DOI: 10.12341/jssms20279

具有时滞概率分布的电力系统负荷频率稳定性分析

    罗小丽,戴璐,练红海,李谟发,邓鹏
作者信息 +

Load Frequency Stability  Analysis of Power Systems with Probability Distribution  Time-Varying Delays

    LUO Xiaoli ,DAI Lu, LIAN Honghai ,LI Mofa ,DENG Peng
Author information +
文章历史 +

摘要

基于概率分布理论和Lyapunov-Krasovskii (L-K)泛函分析方法, 研究一类时滞电力系统的概率分布相关负荷频率稳定性问题. 首先, 考虑模型中通信时滞的概率分布特征, 将安装有PI负荷频率控制器的电力系统转换为一个闭环的随机时滞系统. 其次, 充分利用随机时滞的概率分布信息, 构造合适的增广L-K泛函, 进而使用积分不等式和改进的逆凸组合技术对L-K泛函导数进行估计, 导出电力系统的时滞概率分布相关负荷频率稳定准则. 最后, 通过案例仿真分析表明了所提方法的有效性和优越性.

Abstract

Based on probability distribution theory and L-K functional methods, the issue of probability-distribution-dependent load frequency stability is investigated for a class of power systems with time-varying delays. Firstly, by considering the probability distribution feature of the communication time-delay in the system modeling, the power systems with PI-based load frequency controller is converted to a closed-loop system with stochastic time-varying delay. Secondly, by fully using the probability distribution information of stochastic time-varying delays, a suitable L-K functional is constructed. Then, by employing the integral inequality and improved reciprocally convex combination technique to estimate the derivative of the L-K functional, some probability-distribution-dependent load frequency stability criteria are derived for the power systems. Finally, some case studies are applied to show the effectiveness and superiority of the design method.

关键词

概率分布,  / L-K泛函,  / 负荷频率稳定性,  / 电力系统.

引用本文

导出引用
罗小丽, 戴璐, 练红海, 李谟发, 邓鹏. 具有时滞概率分布的电力系统负荷频率稳定性分析. 系统科学与数学, 2021, 41(5): 1245-1255. https://doi.org/10.12341/jssms20279
LUO Xiaoli , DAI Lu, LIAN Honghai , LI Mofa , DENG Peng. Load Frequency Stability  Analysis of Power Systems with Probability Distribution  Time-Varying Delays. Journal of Systems Science and Mathematical Sciences, 2021, 41(5): 1245-1255 https://doi.org/10.12341/jssms20279
PDF(491 KB)

348

Accesses

0

Citation

Detail

段落导航
相关文章

/