• 论文 • 上一篇    下一篇

带注资的经典风险模型中征税问题

刘晓1,陈振龙2   

  1. 1.安徽师范大学数学计算机科学学院, 芜湖 241003;  浙江工商大学统计与数学学院,杭州 310018; 2.浙江工商大学统计与数学学院, 杭州 310018
  • 出版日期:2015-02-25 发布日期:2015-05-19

刘晓,陈振龙. 带注资的经典风险模型中征税问题[J]. 系统科学与数学, 2015, 35(2): 206-213.

LIU Xiao,CHEN Zhenlong. TAXATION PROBLEMS IN THE CLASSICAL RISK MODEL WITH CAPITAL INJECTIONS[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(2): 206-213.

TAXATION PROBLEMS IN THE CLASSICAL RISK MODEL WITH CAPITAL INJECTIONS

LIU Xiao 1, CHEN Zhenlong2   

  1. 1. School of Mathematics and Computer Science,  Anhui Normal University Wuhu  241003; School of Statistics and Mathematics, Zhejiang Gongshang  University,   Hangzhou 310018; 2.School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou  310018
  • Online:2015-02-25 Published:2015-05-19

在带注资的经典风险模型中研究征税问题. 假设税收按照loss-carry-forward制度支付. 当盈余低于0时, 将采取注资的方式使得盈余达到0而不致破产. 利用微分法, 得到了期望折现征税总额减去期望折现注资成本总额($V(x)$)满足的积分-微分方程, 给出了初始盈余趋于无穷时$V(x)$的极限值, 并在指数理赔假设下给出了$V(x)$的显式表达式. 除此之外, 还给出了一个例子.

In this paper, we study the taxation problems in the classical risk model with capital injections. Assume that the taxes are paid according to a loss-carry-forward system. Once the surplus is below 0, we let the surplus attain 0 avoiding ruin by capital injections. Applying the ``differential argument", the integro-differential equation for the total expected discounted tax payments minus the total expected discounted costs of capital injections ($V(x)$) is derived, the limitation of $V(x)$ is given when the initial surplus $x$ tends to infinity, and the explicit expression for $V(x)$ is obtained under the assumption that the claim sizes are exponentially distributed. In addition, an example is presented.

MR(2010)主题分类: 

()
[1] 章溢,郑丹,温利民.  相依风险模型下风险保费的信度估计[J]. 系统科学与数学, 2017, 37(2): 516-527.
[2] 潘志远,孙显超. Copula方法中的边缘分布设定的计量检验[J]. 系统科学与数学, 2017, 37(2): 537-552.
[3] 赵彪,赵子龙,冯牧. 基于周期GARCH过程VaR的分位回归估计[J]. 系统科学与数学, 2017, 37(1): 253-265.
[4] 杨鹏. Ornstein-Uhlenbeck模型的最优再保险和投资[J]. 系统科学与数学, 2016, 36(12): 2352-2359.
[5] 温利民,庄小红. 零期望效用原理下的贝叶斯保费[J]. 系统科学与数学, 2016, 36(8): 1318-1328.
[6] 杨鹏. 具有交易费用和负债的随机微分博弈[J]. 系统科学与数学, 2016, 36(7): 1040-1045.
[7] 熊熊,梁娟,张维,张永杰.  T+0交易制度对股票市场质量的影响分析[J]. 系统科学与数学, 2016, 36(5): 683-697.
[8] 朱莉,刘向丽. 股指期现货市场间的信息溢出和相关性研究------基于ADCC-TGARCH模型和CCF检验[J]. 系统科学与数学, 2016, 36(4): 487-501.
[9] 杨鹏. 均值-方差准则下CEV模型的最优投资和再保险[J]. 系统科学与数学, 2014, 34(9): 1100-1107.
[10] 赖凯声,陈浩,钱卫宁,周傲英. 微博情绪与中国股市: 基于协整分析[J]. 系统科学与数学, 2014, 34(5): 565-575.
[11] 张连增,段白鸽. 关于共单调性的一种简单扩展: 从独立到共单调[J]. 系统科学与数学, 2013, 33(8): 949-961.
[12] 沈能,王群伟. 中国能源效率的空间模式与差异化节能路径------基于DEA三阶段模型的分析[J]. 系统科学与数学, 2013, 33(4): 457-467.
[13] 刘秀丽;汪寿阳;杨翠红;陈锡康;谢刚;李慧勇. 基于投入产出分析的建筑节能经济 - 环境影响测算模型的研究和应用[J]. 系统科学与数学, 2010, 30(1): 12-021.
[14] 彭海伟;卢祖帝. 金融系统的非线性分析:交易量对股价波动的非线性影响[J]. 系统科学与数学, 2009, 29(11): 1527-1541.
[15] 卢志义;刘乐平;孟生旺. 基于污染Gamma分布的聚合风险模型及其在风险分类中的应用[J]. 系统科学与数学, 2009, 29(2): 174-183.
阅读次数
全文


摘要