• 论文 • 上一篇    下一篇

 健康投资、储蓄与死亡风险

浦科学   

  1. 重庆大学经济与工商管理学院,重庆 400030
  • 出版日期:2016-02-25 发布日期:2016-03-10

浦科学.  健康投资、储蓄与死亡风险[J]. 系统科学与数学, 2016, 36(2): 225-.

PU Kexue. HEALTH INVESTMENT, SAVING AND DEATH RISK[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(2): 225-.

HEALTH INVESTMENT, SAVING AND DEATH RISK

PU Kexue   

  1. School of Economics and Business Administration, Chongqing University, Chongqing 400030)
  • Online:2016-02-25 Published:2016-03-10

随着经济的发展和生活水平的提高, 慢性病日益成为消费者健康危机的主要来源, 作为应对, 消费者一方面通过储蓄以备不时之需, 另一方面通过健康投资进行预防, 因此, 如果将储蓄和健康投资引入消费者效用函数, 构建一个基于世代交叠的消费者决策模型, 则可以讨论健康投资、储蓄以及其他消费如何影响寿命预期的内在机制.通过对模型的均衡分析,结果发现随着收入的递增,为了达到更长的寿命预期,人们一般倾向于进行储蓄和健康投资,且健康投资的增速要快于储蓄,而一般性消费则在逐步递减,从而为预防性储蓄之谜的解释提供了新的视角.

With the improvement of the economic development and living standards, chronic disease is increasingly becoming a major source of consumer health crisis. In response, on the one hand, consumers save for a rainy day, on the other hand, they play healthy investment for prevention. In order to discuss the internal mechanism of how health investment, savings and other consumer products have influenced the life expectancy, we build a consumer decision-making model based on overlapping generations by introducing savings and health investment into consumer utility function. We find that with increasing incomes, people generally tend to keep healthy savings and investment to achieve a longer life expectancy by analysis of the model balanced. At the same time, the growth of the healthy investment is faster than that the savings, but general consumption is gradually decreasing, which thus provides a new perspective for precautionary saving mystery of interpretation.

MR(2010)主题分类: 

()
[1] 何泽荣,倪冬冬,王淑平.  一类等级结构种群系统的调控问题[J]. 系统科学与数学, 2018, 38(10): 1140-1148.
[2] 何泽荣,倪冬冬,郑敏. 具有尺度结构和时滞的种群系统遍历性与最优控制[J]. 系统科学与数学, 2018, 38(1): 1-15.
[3] 胡倩倩,翟金刚,冯恩民. 基于灵敏度函数的连续发酵混杂系统的最优控制[J]. 系统科学与数学, 2017, 37(6): 1413-1426.
[4] 牛腾,翟金刚,冯恩民.  一类非耦联批式流加发酵混杂系统的最优控制[J]. 系统科学与数学, 2016, 36(12): 2211-2224.
[5] 邹辉文. 证券价格长期波动控制系统的最优控制策略[J]. 系统科学与数学, 2010, 30(8): 1081-1101.
[6] 汤善健;朱亮. 线性脉冲控制系统的能控性与最优控制[J]. 系统科学与数学, 2007, 27(3): 354-364.
阅读次数
全文


摘要