Previous Articles Next Articles
XUE Wenjuan^{1}, SHEN Chungen^{2}, YU Zhensheng^{2}
[1] Cai T T and Yuan M, Adaptive covariance matrix estimation through block thresholding, Ann. Stat., 2012, 40(4): 20142042. [2] Wu W B and Pourahmadi M, Nonparametric estimation of large covariance matrices of longitudinal data, Biometrika, 2003, 90(4): 831844. [3] Wu W B and Pourahmadi M, Banding sample autocovariance matrices of stationary processes, Stat. Sin., 2009, 19(4): 17551768. [4] Yu G and Bien J, Learning local dependence in ordered data, J. Mach. Learn. Res., 2017, 18(42): 160. [5] Abramovich Y I, Spencer N K, and Turley M D, Timevarying autoregressive (TVAR) models for multiple radar observations, IEEE Trans. Signal Processing, 2007, 55(4): 12981311. [6] Asif A and Moura J M F, Block matrices with Lblockbanded inverse: Inversion algorithms, IEEE Trans. Signal Processing, 2005, 53(2): 630642. [7] Bickel P J and Levina E, Regularized estimation of large covariance matrices, Ann. Stat., 2008, 36(1): 199227. [8] Kavcic A and Moura J M F, Matrices with banded inverses: Inversion algorithms and factorization of GaussMarkov processes, IEEE Trans. Info. Theory, 2000, 46(4): 14951509. [9] Chen W, Reilly J P, and Wong K M, Detection of the number of signals in noise with banded covariance matrices, IEEE ProceedingsRadar, Sonar, and Navigation, 1996, 143: 289294. [10] Borsdorf B and Higham N J, A preconditioned Newton algorithm for the nearest correlation matrix, IMA J. Numer. Anal., 2010, 30: 94107. [11] Gao Y and Sun D F, Calibrating least squares semidefinite programming with equality and inequality constraints, SIAM J. Matrix Anal. Appl., 2009, 31: 14321457. [12] He B S, Xu M H, and Yuan X M, Solving largescale least squares covariance matrix problems by alternating direction methods, SIAM J. Matrix Anal. Appl., 2011, 32: 136152. [13] Higham N J, Computing the nearest correlation matrix — A problem from finance, IMA J. Numer. Anal., 2002, 22: 329343. [14] Qi H D and Sun D F, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM J. Matrix Anal. Appl., 2006, 28: 360385. [15] Sturm J F, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 1999, 11: 625653. [16] Tütüncü R H, Toh K C, and Todd M J, Solving semidefinitequadraticlinear programs using SDPT3, Math. Program., 2003, 95: 189217. [17] Dykstra R L, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc., 1983, 78: 837842. [18] Boyd S and Xiao L, Least squares covariance matrix adjustment, SIAM J. Matrix Anal. Appl., 2005, 27: 532546. [19] Malick J, A dual approach to semidefinite least squares problems, SIAM J. Matrix Anal. Appl., 2004, 26: 272284. [20] Shen C G, Fan C X, Wang Y L, et al., Limited memory BFGS algorithm for the matrix approximation problem in Frobenius norm, Comput. Appl. Math., 2020, 39: 43. [21] Shen C G, Wang Y L, Xue W J, et al., An accelerated activeset algorithm for a quadratic semidefinite program with general constraints, Comput. Optim. Appl., 2021, 78: 142. [22] Li Q N and Li D H, A projected semismooth Newton method for problems of calibrating least squares covariance matrix, Oper. Res. Lett., 2011, 39: 103108. [23] Sun Y F and Vandenberghe L, Decomposition methods for sparse matrix nearness problems, SIAM J. Matrix Anal. Appl., 2015, 36: 16911717. [24] Schwertman N C and Allen D M, Smoothing an indefinite variancecovariance matrix, J. Stat. Comput. Simul., 1979, 9: 183194. [25] Nocedal J and Wright S J, Numerical Optimization, 2nd Edition, Springer, New York, 2006. [26] Golub G H and VanLoan C F, Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, MD, 1996. [27] Liu D C and Nocedal J, On the limited memory BFGS method for largescale optimization, Math. Prog., 1989, 45: 503528. [28] Rockafellar R T, Conjugate Duality and Optimization, CBMSNSF Regional Conf. Ser. in Appl. Math. 16, SIAM, Philadelphia, 1974. [29] Zhang H and Hager H H, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 2004, 14: 10431056. [30] Polizzi E, Densitymatrixbased algorithms for solving eigenvalue problems, Phys. Rev. B, 2009, 79: 115112. [31] FEAST solver, 20092015. http://www.feastsolver.org/. [32] Qi L Q, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 1993, 18: 227244. 
No related articles found! 
Viewed  
Full text 


Abstract 

