Previous Articles Next Articles
XU Hongxia^{1,2}, FAN Guoliang^{1}, LI Jinchang^{2}
XU Hongxia, FAN Guoliang, LI Jinchang. SingleIndex Quantile Regression with Left Truncated Data[J]. Journal of Systems Science and Complexity, 2022, 35(5): 19631987.
[1] Härdle W and Stoker T, Investing smooth multiple regression by the method of average derivatives, Journal of the American Statistical Association, 1989, 84:986995. [2] Härdle W, Hall P, and Ichimura H, Optimal smoothing in singleindex models, Annals of Statistics, 1993, 21:157178. [3] Chaudhuri P, Doksum K, and Samarov A, On average derivative quantile regression, Annals of Statistics, 1997, 25:715744. [4] Delecroix M, Hristache M, and Patilea V, On semiparametric mestimation in singleindex regression, Journal of Statistical Planning and Inference, 2006, 136:730769. [5] Zhu L P and Zhu L X, Nonconcave penalized inverse regression in singleindex models with high dimensional predictors, Journal of Multivariate Analysis, 2009, 100:862875. [6] Wu T, Yu K, and Yu Y, Singleindex quantile regression, Journal of Multivariate Analysis, 2010, 101:16071621. [7] Kong E and Xia Y, A singleindex quantile regression model and its estimation, Econometric Theory, 2012, 28:730768. [8] Liu J C, Zhang R Q, Zhao W H, et al., A robust and efficient estimation method for single index models, Journal of Multivariate Analysis, 2013, 122:226238. [9] Lu Y Q, Zhang R Q, and Hu B, The adaptive LASSO spline estimation of singleindex model, Journal of Systems Science and Complexity, 2016, 29:11001111. [10] Koenker R and Bassett G, Regression quantiles, Econometrica, 1978, 46:3350. [11] Wang H J, Zhu Z, and Zhou J, Quantile regression in partially linear varying coefficient models, Annals of Statistics, 2009, 37:38413866. [12] Lv Y Z, Zhang R Q, Zhao W H, et al., Quantile regression and variable selection for the singleindex model, Journal of Applied Statistics, 2014, 41:15651577. [13] Lv Y Z, Zhang R Q, Zhao W H, et al., Quantile regression and variable selection of partial linear singleindex model, Annals of the Institute of Statistical Mathematics, 2015, 67:375409. [14] Jiang R, Qian W M, and Zhou Z G, Weighted composite quantile regression for singleindex models, Journal of Multivariate Analysis, 2016, 148:3448. [15] Jiang R, Zhou Z G, and Qian W M, Two step composite quantile regression for singleindex models, Computational Statistics and Data Analysis, 2013, 64:180191. [16] Ma S J and He X M, Inference for singleindex quantile regression models with profile optimization, Annals of Statistics, 2016, 44:12341268. [17] Jiang R and Qian W M, Quantile regression for singleindexcoefficient regression models, Statistics&Probability Letters, 2016, 110:305317. [18] Zhao W H, Zhang R Q, Lü Y Z, et al., Quantile regression and variable selection of singleindex coefficient model, Annals of the Institute of Statistical Mathematics, 2017, 69:761789. [19] Li H F, Liu Y, and Luo Y X, Double penalized quantile regression for the linear mixed effects model, Journal of Systems Science and Complexity, 2020, 33(6):20802102. [20] Klein J P and Moeschberger M L, Survival Analysis:Techniques for Censored and Truncated Data, Springer, New York, 2003. [21] Woodroofe W, Estimation a distribution function with truncated data, Annals of Statistics, 1985, 13:163177. [22] He S Y and Yang G L, Estimation of the truncation probability in the random truncation model,Annals of Statistics, 1998, 26:10111027. [23] He S Y and Yang G L, Estimation of regression parameters with left truncated data, Journal of Statistical Planning and Inference, 2003, 117:99122. [24] OuldSaïd E and Lemdani M, Asymptotic properties of a nonparametric regression function estimator with randomly truncated data, Annals of the Institute of Statistical Mathematics, 2006, 58:357378. [25] Stute W and Wang J L, The central limit theorem under random truncation, Bernoulli, 2008, 14:604622. [26] Zhou W H, A weighted quantile regression for randomly truncated data, Computational Statistics and Data Analysis, 2011, 55:554566. [27] Xu H X, Fan G L, Chen Z L, et al., Weighted quantile regression and testing for varyingcoefficient models with randomly truncated data, AStAAdvances in Statistical Analysis, 2018, 102:565588. [28] Xu H X, Chen Z L, Wang J F, et al., Quantile regression and variable selection for partially linear model with randomly truncated data, Statistical Papers, 2019, 60:11371160. [29] Lemdani M, OuldSaïd E, and Poulin P, Asymptotic properties of a conditional quantile estimator with randomly truncated data, Journal of Multivariate Analysis, 2009, 100:546559. [30] Liang H Y and Liu A A, Kernel estimation of conditional density with truncated, censored and dependent data, Journal of Multivariate Analysis, 2013, 120:4058. [31] Liang H Y and Baek J I, Asymptotic normality of conditional density estimation with lefttruncated and dependent data, Statistical Papers, 2016, 57:120. [32] Yao M, Wang J F, Lin L, et al., Variable selection and weighted composite quantile estimation of regression parameters with lefttruncated data, Communications in StatisticsTheory and Methods, 2018, 47:44694482. [33] Xue L G and Zhu L X, Empirical likelihood for singleindex models, Journal of Multivariate Analysis, 2006, 97:12951312. [34] Wang H and Leng C, Unified lasso estiation via least squares approximation, Journal of the American Statistical Association, 2007, 102:10391048. [35] Zhu L X and Xue L G, Empirical likelihood confidence regions in a partially linear singleindex model, Journal of the Royal Statistical Society Series B, 2006, 68:549570. [36] Yeh I C, Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research, 1998, 28:17971808. [37] Kai B, Li R Z, and Zou H, New efficient estimation and variable selection methods for semiparametric varyingcoefficient partially linear models, Annals of Statistics, 2011, 39:305332. [38] Mack Y and Silverman B W, Weak and strong uniform consistency of kernel regression estimates, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1982, 61(3):405415. [39] Owen A B, Empirical likelihood ratio confidence regions, Annals of Statistics, 1990, 18:90120. [40] Knight K, Limiting distributions for l1 regression estimators under general conditions, Annals of Statistics, 1998, 26:755770. [41] Xia Y and Härdle W, Semiparametric estimation of partially linear singleindex models, Journal of Multivariate Analysis, 2006, 97(5):11621184. [42] Geyer C J, On the asymptotics of constrained mestimation, Annals of Statistics, 1994, 22:19932010. 
[1]  LIU Yue, ZOU Jiahui, ZHAO Shangwei, YANG Qinglong. Model Averaging Estimation for VaryingCoefficient SingleIndex Models [J]. Journal of Systems Science and Complexity, 2022, 35(1): 264282. 
[2]  XIAO Juxia, XIE Tianfa, ZHANG Zhongzhan. Estimation in Partially Observed Functional Linear Quantile Regression [J]. Journal of Systems Science and Complexity, 2022, 35(1): 313341. 
[3]  FENG Yan · WANG Yijun · WANG Weiwei · CHEN Zhuo. Robust Estimation of Semiparametric Transformation Model for Panel Count Data [J]. Journal of Systems Science and Complexity, 2021, 34(6): 23342356. 
[4]  ZHANG Yanqing,TANG Niansheng. Bayesian Empirical Likelihood Estimation of Quantile Structural Equation Models [J]. Journal of Systems Science and Complexity, 2017, 30(1): 122138. 
[5]  LU Yiqiang,ZHANG Riquan,HU Bin. The Adaptive LASSO Spline Estimation of SingleIndex Model [J]. Journal of Systems Science and Complexity, 2016, 29(4): 11001111. 
[6]  FAN Yan,GAI Yujie,ZHU Lixing. Asymtotics of Dantzig Selector for a General SingleIndex Model [J]. Journal of Systems Science and Complexity, 2016, 29(4): 11231144. 
[7]  ZHAO Weihua, ZHANG Riquan. Variable Selection of Varying Dispersion Studentt Regression Models [J]. Journal of Systems Science and Complexity, 2015, 28(4): 961977. 
[8]  LI Xuejing,DU Jiang,LI Gaorong,FAN Mingzhi. VARIABLE SELECTION FOR COVARIATE ADJUSTED REGRESSION MODEL [J]. Journal of Systems Science and Complexity, 2014, 27(6): 12271246. 
[9]  Xiaohui LIU, Guofu WANG, Xuemei HU ,Bo LI. ZERO FINITEORDER SERIAL CORRELATION TEST IN A PARTIALLY LINEAR SINGLEINDEX MODEL [J]. Journal of Systems Science and Complexity, 2012, 25(6): 11851201. 
[10]  Lin Cheng ZHAO;Xue Na WANG;Yao Hua WU. INFERENCE ON THE RANK OF THE GROWTH CURVE MODEL USING MODEL SELECTION METHOD [J]. Journal of Systems Science and Complexity, 2001, 14(2): 218224. 
Viewed  
Full text 


Abstract 

