Iterative Scheme of Common Zero Points for Finite Maximal Monotone Operators in Banach Space
Wei Li(1), Zhou Haiyun(2)
Author information+
(1)Hebei University of Economics and Business, Shijiazhuang 050061; Ordnance Engineering College, Shijiazhuang 050003;(2)Ordnance Engineering College, Shijiazhuang 050003; Hebei Normal University, Shijiazhuang 050016
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
1900-01-01
1900-01-01
2007-04-25
发布日期
2007-04-25
摘要
令E为实光滑、一致凸Banach空间, E* 为其对偶空间.令Ai,Bi \subset E × E*, i = 1,2,...,m, 为极大单调算子且∪mi=1(Ai-10∪Bi-10)≠emptyset. 引入新的迭代算法,并利用Lyapunov泛函,Qr算子与广义投影算子等技巧,证明迭代序列弱收敛于极大单调算子Ai,Bi,i =1,2,...,m的公共零点的结论.
Abstract
Let be a real smooth and uniformly convex space with its duality space. For let be maximal monotone operators with . A new iterative scheme is introduced which is proved to be weakly convergent to common zero points of maximal monotone operators and by using the techniques of Lyapunov functionals, operators, and generalized projection operators, etc.
Wei Li
, Zhou Haiyun. , {{custom_author.name_en}}.
Iterative Scheme of Common Zero Points for Finite Maximal Monotone Operators in Banach Space. Journal of Systems Science and Mathematical Sciences, 2007, 27(2): 184-193 https://doi.org/10.12341/jssms08765