摘要
令E为实光滑、一致凸Banach空间, E* 为其对偶空间.令Ai,Bi \subset E × E*, i = 1,2,...,m,
为极大单调算子且∪mi=1(Ai-10∪Bi-10)≠emptyset. 引入新的迭代算法,并利用Lyapunov泛函,Qr算子与广义投影算子等技巧,证明迭代序列弱收敛于极大单调算子Ai,Bi,i =1,2,...,m的公共零点的结论.
Abstract
Let be a real smooth and uniformly convex space with its duality space. For let be maximal monotone operators with . A new iterative scheme is introduced which is proved to be weakly convergent to common zero points of maximal monotone operators and by using the techniques of Lyapunov functionals, operators, and generalized projection operators, etc.
关键词
Lyapunov泛函 /
极大单调算子 /
一致凸Banach空间 /
Reich不等式
{{custom_keyword}} /
Key words
Lyapunov functional /
maximal monotone /
operator /
uniformly convex Banach space /
Reich inequality
{{custom_keyword}} /
魏利
, 周海云.
, {{custom_author.name_cn}}.
Banach空间中有限个极大单调算子公共零点的迭代格式. 系统科学与数学, 2007, 27(2): 184-193. https://doi.org/10.12341/jssms08765
Wei Li
, Zhou Haiyun.
, {{custom_author.name_en}}.
Iterative Scheme of Common Zero Points for Finite Maximal Monotone Operators in Banach Space. Journal of Systems Science and Mathematical Sciences, 2007, 27(2): 184-193 https://doi.org/10.12341/jssms08765
中图分类号:
47H05
47H09
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}