• 论文 •

### 二供应商经济批量问题的多项式时间算法

1. (1)曲阜师范大学运筹与管理学院, 276826; 哈尔滨工业大学管理学院, 150001;(2)曲阜师范大学运筹与管理学院, 276826;(3)哈尔滨工业大学管理学院,150001
• 收稿日期:2008-03-31 修回日期:2010-03-09 出版日期:2010-07-25 发布日期:2010-07-25

XU Jianteng;BAI Qingguo;ZHANG Qingpu. A Polynomial Time Algorithm for Two-Supplier Economic Lot-Size Problem[J]. Journal of Systems Science and Mathematical Sciences, 2010, 30(7): 936-946.

### A Polynomial Time Algorithm for Two-Supplier Economic Lot-Size Problem

XU Jianteng(1), BAI Qingguo(2), ZHANG Qingpu(3)

1. (1)School of Operations Research and Management, Qufu Normal University, 276826; School of Management, Harbin Institute of Technology, 150001;(2)School of Operations Research and Management, Qufu Normal University, 276826;(3)School of Management, Harbin Institute of Technology, 150001
• Received:2008-03-31 Revised:2010-03-09 Online:2010-07-25 Published:2010-07-25

In order to find the optimal replenishment policy from the suppliers with different structures, this paper considers the two-supplier economic lot-size problem in which the retailer replenishes products from two suppliers. The two suppliers are characterized by multiple set-ups and all-unit quantity discount cost structures.
Some structure properties are proposed to reduce the computational complexity.
Then the feasible solutions of the problem are converted into a directed network.
It is proved that this two-supplier economic lot-size problem can be solved in polynomial time by integrated dynamic programming and Dijkstra's shortest-path algorithm.

MR(2010)主题分类:

()
 [1] 王磊，任建峰，柏庆国. 具有多个制造商和分批配送的同类机排序问题[J]. 系统科学与数学, 2019, 39(9): 1428-1434. [2] 王磊，张玉忠，邢伟. 加工时间离散可控的分批配送排序问题[J]. 系统科学与数学, 2016, 36(10): 1652-1658. [3] 王磊，张玉忠，柏庆国.  单机带有可拒绝的供应链排序问题[J]. 系统科学与数学, 2014, 34(9): 1044-1050. [4] 王磊，张玉忠，王成飞. 机器具有学习效应的供应链排序问题[J]. 系统科学与数学, 2013, 33(7): 799-806. [5] 张玲，李仲飞. 收益序列相关的动态资产-负债管理[J]. 系统科学与数学, 2012, 32(3): 297-309. [6] 王科峰, 叶春明, 唐国春. 节点具有双重需求的车辆路径问题及其性质[J]. 系统科学与数学, 2011, 31(10): 1185-1196. [7] 王磊;王国庆;易余胤. 交货期可以指派的供应链排序问题[J]. 系统科学与数学, 2010, 30(12): 1622-1630. [8] 李仲飞 从建发. 最优多期比例再保险策略的必要条件[J]. 系统科学与数学, 2008, 28(11): 1354-1362.