Z/pkZ上的多元置换多项式

蒋剑军;孙琦

系统科学与数学 ›› 2005, Vol. 25 ›› Issue (3) : 299-305.

PDF(245 KB)
PDF(245 KB)
系统科学与数学 ›› 2005, Vol. 25 ›› Issue (3) : 299-305. DOI: 10.12341/jssms09914
论文

Z/pkZ上的多元置换多项式

    蒋剑军(1),孙琦(2)
作者信息 +

ON PERMUTATION POLYNOMIALS IN SEVERAL INDETERMINATES OVER Z/pkZ

    Jiang Jianjun(1),Sun Qi(2)
Author information +
文章历史 +

摘要

Z 表整数集, p 为一给定奇素数, k 为一正整数. 张起帆(1995)得到了一类 模 p 奇异的二元多项式成为剩余类环 Z/pkZ 上的置换多项式的一个充要条件, 胡永忠(2001)将张起帆的这一结果的充分条件推广到了一般 n 元的情形. 本文得到了一类模 p 奇异的 n 元多项式成为剩余类环 Z/pkZ 上的置换多项式的一个充要 条件, 所得结论是对张文(n=2)和胡文(n>2)的自然推广和改进.

Abstract

Let Z be a ring of integers, p be an odd prime and k be a positive integer. Zhang Qifan[1] obtained a sufficient and necessary condition that some singular polynomials mod p in two variables over Z should be permutation polynomials over the residue class ring Z/pkZ. And Hu Yongzhong[2] generalized the sufficient condition of this result to the case where the polynomials are in n variables. In this note the authors obtain a sufficient and necessary condition that some singular polynomials mod p in n variables over Z should be permutation polynomials over Z/pkZ, which is a natural generalization and an improvement of the cases [1](n=2) and [2](n>2).

关键词

置换多项式 / 多项式模 p 的奇点 / p

Key words

Permutation polynomial / singular point mod p / singular polynomial mod p

引用本文

导出引用
蒋剑军 , 孙琦. Z/pkZ上的多元置换多项式. 系统科学与数学, 2005, 25(3): 299-305. https://doi.org/10.12341/jssms09914
Jiang Jianjun , Sun Qi. ON PERMUTATION POLYNOMIALS IN SEVERAL INDETERMINATES OVER Z/pkZ. Journal of Systems Science and Mathematical Sciences, 2005, 25(3): 299-305 https://doi.org/10.12341/jssms09914
PDF(245 KB)

160

Accesses

0

Citation

Detail

段落导航
相关文章

/