• 论文 •

具有时滞和可变营养消耗率的比率型Chemostat模型稳定性分析

1. (1)北京科技大学应用科学学院数力系, 北京 100083; (2)延安大学数学与计算机学院, 延安 716000
• 收稿日期:2006-09-04 修回日期:2007-05-11 出版日期:2009-02-25 发布日期:2009-02-25

DONG Qinglai;MA Wanbiao. Stability Analysis of a Ratio-Dependent Chemostat Model withVariable Yield and Time Delay[J]. Journal of Systems Science and Mathematical Sciences, 2009, 29(2): 228-241.

Stability Analysis of a Ratio-Dependent Chemostat Model withVariable Yield and Time Delay

DONG Qinglai(1)(2), MA Wanbiao(1)

1. (1)Department of Mathematics and Mechanics, School of Applied Science University of Science and Technology Beijing, Beijing 100083; (2)School of Mathematics and Computer Science, Yan'an University, Yan'an 716000
• Received:2006-09-04 Revised:2007-05-11 Online:2009-02-25 Published:2009-02-25

In this paper, based on some biological meanings, a class of
ratio-dependent Chemostat model with variable yield and time delay
is considered. In the Chemostat model, time delay is introduced into
growth response of microbial population. Firstly, a detailed
theoretical analysis about existence and boundedness of the
solutions and local asymptotic stability of the equilibria are
carried out, and the Hopf bifurcation is also studied. Then by
using classical Lyapunov-LaSalle invariance principle, it is shown
that the washout
equilibrium (i.e., boundary equilibrium) is globally asymptotically
stable for any time delay. Finally, it is shown that the Chemostat model is uniformly
persistent for any time delay.

MR(2010)主题分类:

()
 [1] 祁雪萍, 阿不都克热木·阿吉. 具有小修和一般型更换策略的多状态退化系统的定性分析[J]. 系统科学与数学, 2021, 41(9): 2571-2594. [2] 杨坤一, 董云宁. 时滞反馈控制下五维能源供需系统的稳定性分析及Hopf分支性质[J]. 系统科学与数学, 2021, 41(8): 2113-2136. [3] 余凯. 矩形区域热-板耦合系统的稳定性分析[J]. 系统科学与数学, 2021, 41(6): 1481-1492. [4] 罗小丽, 戴璐, 练红海, 李谟发, 邓鹏. 具有时滞概率分布的电力系统负荷频率稳定性分析[J]. 系统科学与数学, 2021, 41(5): 1245-1255. [5] 黄佩, 周少波. 时滞随机SIS传染病模型[J]. 系统科学与数学, 2021, 41(3): 615-626. [6] 练红海，覃事刚，肖伸平，肖会芹. 基于采样区间分割的线性系统稳定准则[J]. 系统科学与数学, 2021, 41(2): 310-324. [7] 赵国威, 庄光明, 夏建伟, 孙伟, 陈国梁. 具有混合时变时滞的不确定马尔科夫跳变系统中立无源滤波[J]. 系统科学与数学, 2021, 41(12): 3374-3394. [8] 田洪乔, 张志信, 蒋威. 分数阶退化时滞微分系统的有限时间镇定性问题[J]. 系统科学与数学, 2021, 41(11): 3000-3007. [9] 支霞, 冯红银萍. 输入带有时滞的线性系统的镇定[J]. 系统科学与数学, 2021, 41(1): 17-23. [10] 张德金, 向淑文, 邓喜才, 杨彦龙. 约束图像拓扑下的向量值拟变分不等式解集的通有稳定性[J]. 系统科学与数学, 2021, 41(1): 115-125. [11] 傅金波, 陈兰荪. 具有免疫应答和吸收效应的病毒感染模型分析[J]. 系统科学与数学, 2021, 41(1): 280-290. [12] 晋守博，李耀红，魏章志.  基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538. [13] 吴红星，程国飞，王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究[J]. 系统科学与数学, 2020, 40(9): 1539-1549. [14] 杨洋，赵晓冬. 偏好序阈值约束下的三边单向非循环稳定匹配[J]. 系统科学与数学, 2020, 40(8): 1420-1431. [15] 刘芳，李明涛. 一类具有自发行为的SIRI谣言传播模型研究[J]. 系统科学与数学, 2020, 40(7): 1257-1269.