关于Banach空间一阶非线性脉冲积分-微分方程初值问题解存在性的注记

谢胜利

系统科学与数学 ›› 2008, Vol. 28 ›› Issue (4) : 482-489.

PDF(328 KB)
PDF(328 KB)
系统科学与数学 ›› 2008, Vol. 28 ›› Issue (4) : 482-489. DOI: 10.12341/jssms10099
论文

关于Banach空间一阶非线性脉冲积分-微分方程初值问题解存在性的注记

    谢胜利
作者信息 +

A Remrk on the Existence of Solutions of Initial Value Problem for First order Nonlinear Impulsive Integro-Differential Equation in Banach Space

    XIE Shengli
Author information +
文章历史 +

摘要

m(t)C[Jk,R+](k=1,2,,m),且满足不等式m(t)(L1+L2t)0tm(s)ds+L3t0am(s)ds+0<tk<tMkm(tk),其中Li0(i=1,2,3),Mk0满足KaL3(eδ(L1+aL2)1)<L1+aL2 或者a(2L1+aL2+aKL3)<2,这里δ=max0km(tk+1tk),\qK=inf{d1:0am(s)dsdmin0kmtktk+1m(s)ds}.m(t)=0, tJ.
我们首先指出上述的下确界K不存在,然后在比较宽松的条件下,获得了Banach空间中一阶非线性脉冲积分--微分方程初值问题解的存在性定理,本质上改进和更正了现有的结果.

Abstract

Assume that m(t)C[Jk,R+](k=1,2,,m) and m(t)(L1+L2t)0tm(s)ds+L3t0am(s)ds+0<tk<tMkm(tk),where Li0(i=1,2,3), Mk0 satisfy either KaL3(eδ(L1+aL2)1)<L1+aL2, or
a(2L1+aL2+aKL3)<2 with δ=max0km(tk+1tk),\qK=inf{d1:0am(s)dsdmin0kmtktk+1m(s)ds}.
Then m(t)=0, tJ. Firstly, it is shown that the above infimum K is not meaning, and then the existence theorem of solutions of initial value problems is obtained for first order nonlinear impulsive integro-differential equations in Banach spaces under some looser conditions, and hence the existing results are improved.

关键词

脉冲积分--微分方程 / 初值问题 / 非紧性测度.

Key words

Impulsive integro-differential equation / initial value problem / measure of noncompactness.

引用本文

导出引用
谢胜利. 关于Banach空间一阶非线性脉冲积分-微分方程初值问题解存在性的注记. 系统科学与数学, 2008, 28(4): 482-489. https://doi.org/10.12341/jssms10099
XIE Shengli. A Remrk on the Existence of Solutions of Initial Value Problem for First order Nonlinear Impulsive Integro-Differential Equation in Banach Space. Journal of Systems Science and Mathematical Sciences, 2008, 28(4): 482-489 https://doi.org/10.12341/jssms10099
中图分类号: 34K45    45J05   
PDF(328 KB)

157

Accesses

0

Citation

Detail

段落导航
相关文章

/