一致等度连续的渐近拟伪压缩型映象的强收敛性

杨理平

系统科学与数学 ›› 2011, Vol. 31 ›› Issue (5) : 591-596.

PDF(328 KB)
PDF(328 KB)
系统科学与数学 ›› 2011, Vol. 31 ›› Issue (5) : 591-596. DOI: 10.12341/jssms11612
论文

一致等度连续的渐近拟伪压缩型映象的强收敛性

    杨理平
作者信息 +

STRONG CONVERGENCE FOR UNIFORMLY EQUI-CONTINUOUS AND  ASYMPTOTICALLY QUASI\[2mm] PSEUDO-CONTRACTIVE  TYPE MAPPINGS

    YANG  Liping
Author information +
文章历史 +

摘要

E是实赋范线性空间. KE中的非空凸子集. T1, T2K上的自映象. 当T1是一致等度连续的渐近拟伪压缩型映象, T2是广义一致
Lipschitz映象时, 研究了具误差的Isikawa型迭代序列强收敛于T1, T2公共不动点的充要条件.所得结果推广和改进了近期内的相应结果.

Abstract

Let E be an arbitrary normed linear space, K be a nonempty convex subset of E and T1, T2 be self-map on K. A necessary and sufficient condition is shown for the Ishikawa type iterative sequence with errors to converge strongly to the common fixed point of T1, T2 when T1 is a uniformly equi-continuous and asymptotically quasi pseudo-contractive type mapping and T2 is generalized uniformly Lipschitz mappings. The results improve and generalize  some recent known results in the literature.

关键词

渐近拟伪压缩型映象 / 一致等度连续 /   / 广义一致Lipschitz 映象 /   / 具误差的Isikawa型迭代序列 /   / 不动点

Key words

Asymptotically quasi pseudo-contractive type mapping /  uniformly equi-continuous /    / generalized uniformly Lipschitz mapping /  Ishikawa type
 
/ iterative sequence with errors /  fixed points

引用本文

导出引用
杨理平. 一致等度连续的渐近拟伪压缩型映象的强收敛性. 系统科学与数学, 2011, 31(5): 591-596. https://doi.org/10.12341/jssms11612
YANG Liping. STRONG CONVERGENCE FOR UNIFORMLY EQUI-CONTINUOUS AND  ASYMPTOTICALLY QUASI\[2mm] PSEUDO-CONTRACTIVE  TYPE MAPPINGS. Journal of Systems Science and Mathematical Sciences, 2011, 31(5): 591-596 https://doi.org/10.12341/jssms11612
中图分类号: 47H09    47H10   
PDF(328 KB)

Accesses

Citation

Detail

段落导航
相关文章

/