Banach空间中k-次增生型变分包含解的存在与收敛性

张树义

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (3) : 363-376.

PDF(348 KB)
PDF(348 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (3) : 363-376. DOI: 10.12341/jssms11856
论文

 Banach空间中k-次增生型变分包含解的存在与收敛性

    张树义
作者信息 +

THE EXISTENCE AND CONVERGENCE OF SOLUTIONS FOR VARIATIONAL INCLUSIONS WITH k-SUBACCRETIVE TYPE MAPPINGS IN BANACH SPACES

    ZHANG Shuyi
Author information +
文章历史 +

摘要

在实自反Banach空间中, 引入并研究一类k-次增生型变分包含问题, 证明了这类变分包含解的存在与唯一性, 并在去掉αn0,βn0(n)以及序列{xn}{ηφ(g(xn))}有界限制的条件下,建立了k-次增生型 变分包含和变分不等式解的具有混合误差的多步迭代序列的强收敛性定理, 给出了收敛率的估计式,从而改进和推广了前人的研究结果.

Abstract

The purpose of this paper is to introduce and study a new class of variational inclusion problems with Lipschitz k-subaccretive type mappings in real reflexive Banach spaces. The existence and uniqueness of such solutions are proved and convergence of the multi-step iterative sequences with mixed errors of solutions for the variational inclusions and variational inequalities with k-subaccretive type mappings are also established under removing some re- strictions. General convergence rate estimates are given in our results, which improve and extend the existing research results.

关键词

变分包含 / 变分不等式 / 多步迭代序列 / k-次增生映象 / 收敛率估计.

引用本文

导出引用
张树义.  Banach空间中k-次增生型变分包含解的存在与收敛性. 系统科学与数学, 2012, 32(3): 363-376. https://doi.org/10.12341/jssms11856
ZHANG Shuyi. THE EXISTENCE AND CONVERGENCE OF SOLUTIONS FOR VARIATIONAL INCLUSIONS WITH k-SUBACCRETIVE TYPE MAPPINGS IN BANACH SPACES. Journal of Systems Science and Mathematical Sciences, 2012, 32(3): 363-376 https://doi.org/10.12341/jssms11856
中图分类号: 47H06    47H17    49J30   
PDF(348 KB)

177

Accesses

0

Citation

Detail

段落导航
相关文章

/