• 论文 •    下一篇

基于自抗扰控制的直升机航向控制方法

姜哲   

  1. 中国科学院数学与系统科学研究院系统控制重点实验室, 北京 100190
  • 出版日期:2012-06-25 发布日期:2012-08-22

姜哲. 基于自抗扰控制的直升机航向控制方法[J]. 系统科学与数学, 2012, 32(6): 641-652.

JIANG Zhe. ACTIVE DISTURBANCE REJECTION CONTROL FOR THE YAW TRACKING FOR HELICOPTER[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(6): 641-652.

ACTIVE DISTURBANCE REJECTION CONTROL FOR THE YAW TRACKING FOR HELICOPTER

JIANG Zhe   

  1. The Key Laboratory of System and Control, Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing 100190
  • Online:2012-06-25 Published:2012-08-22
针对直升机航向动力学包含输入非线性、时变参数和主-尾旋翼之间的强耦合的特性, 传统的控制方法很难实现良好的性能.  提出了一种自抗扰控制器的设计方法, 并设计了扩张状态观测器, 对参数不确定性和外部干扰进行估计, 并实时补偿. 与常规控制相比, 在保证闭环稳定性的同时, 能够应对模型参数的不确定性以及扰动, 能够进一步使跟踪误差满足期望精度. 并针对实际模型直升机实验平台航向动力学模型, 在参数不确定性和主旋翼有扰动情况下, 仿真结果验证了该方法的有效性.
The yaw dynamics of helicopter involves input nonlinearity, time-varying parameters and the couplings between main and tail rotor. With respect to such a complicated dynamics, the normal control is difficult to realize good tracking performance while maintaining stability and robustness simultaneously. In this paper, an active disturbance rejection control (ADRC) method is proposed. We design an extended state observer (ESO) to estimate the impact from parametric uncertainties and disturbances, and to realize online compensations. Time-varying parameters and other uncertainties in the helicopter dynamics can be rejected by active disturbance rejection control to achieve small tracking error. The simulations results with respect to the dynamics identified from a real helicopter-on-arm testbed are presented. The simulation results demonstrate the effectiveness of the proposed algorithm under the time-varying arameters and other uncertainties.

MR(2010)主题分类: 

()
[1] 李亚军,邓飞其. 中立型带跳不确定变时滞随机系统鲁棒指数稳定[J]. 系统科学与数学, 2012, 32(7): 821-830.
[2] 闫茂德,宋程,王平. 一类具有时变时滞和Markov跳变参数的不确定系统滑模控制[J]. 系统科学与数学, 2012, 32(6): 739-749.
阅读次数
全文


摘要