摘要
引进了广义混合单调算子与算子方程的三元拟解的新定义. 利用半序方法和锥理论,首先在完备度量空间和Banach空间中讨论了广义混合单调算子方程在正向和反向上下解条件下的三元拟解的存在性, 其次,在Banach空间中研究了广义混合单调算子方程解的存在唯一性.所得结果改进和推广了相关文献中的的结果. 最后,给出了主要结果的一个应用.
Abstract
In this paper, the new concepts of generalized mixed monotone operators and tripled quasi-solutions for operator equations are introduced.By using partial order method and cone theory, the existence of tripled quasi-solutions for generalized mixed monotone operator equations under the condition of forward and counter upper-down solutions are studied in complete metric spaces and Banach spaces. Then the existence of solutions for generalized mixed monotone operator equations is studied in Banach spaces. The results extend and improve some existing results. Finally, an example is given to illustrate the validity of the main results.
关键词
半序 /
完备度量空间 /
Banach空间 /
广义混合单调算子.
{{custom_keyword}} /
罗婷,朱传喜.
半序空间中广义混合单调算子方程的可解性与应用. 系统科学与数学, 2014, 34(5): 589-601. https://doi.org/10.12341/jssms12326
LUO Ting, ZHU Chuanxi.
SOLVABILITY OF GENERALIZED MIXED MONOTONE OPERATOR EQUATIONS IN PARTIALLY ORDERED SPACES AND APPLICATIONS. Journal of Systems Science and Mathematical Sciences, 2014, 34(5): 589-601 https://doi.org/10.12341/jssms12326
中图分类号:
47H10
60A10
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}