• 论文 • 上一篇    下一篇

基于混合CVaR的供应链回购策略优化与协调研究

王莹莉   

  1. 中国科学院数学与系统科学研究院, 北京 100190
  • 出版日期:2015-11-25 发布日期:2015-12-18

王莹莉. 基于混合CVaR的供应链回购策略优化与协调研究[J]. 系统科学与数学, 2015, 35(11): 1304-1315.

WANG Yingli. RESEARCH ON BUY-BACK POLICY OPTIMIZATION AND COORDINATION OF SUPPLY CHAIN BASED ON MIXTURE CVAR[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(11): 1304-1315.

RESEARCH ON BUY-BACK POLICY OPTIMIZATION AND COORDINATION OF SUPPLY CHAIN BASED ON MIXTURE CVAR

WANG Yingli   

  1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190)
  • Online:2015-11-25 Published:2015-12-18

研究了风险中性供应商与混合CVaR约束零售商构成的两级供应链模 型中回购契约协调问题. 混合CVaR是由最小化CVaR和最大化CVaR通过加权平均的方式得到的,它包括风险 规避,风险中性和风险追求三种特殊情形. 引入一个刻画决策者风险态度的``风险偏好系数", 证明当风险偏好系数大于1时混合CVaR与前景理论中的损失规避均能刻画决策者 对损失的敏感性高于对收益的敏感性. 得到零售商最优订货量和最优利润关于风险偏好系数的单调性; 证明无论风险偏好系数大于等于1或小于1,回购契约都能实现供应链协调,并推导 出实现系统协调时最优契约参数之间的关系.最后结合数值例子验证了供应链回 购契约机制的有效性.

This paper develops buy back contract coordination model in a two-stage supply chain consisting of a risk neutral supplier and a retailer with mixture conditional value-at-risk constrain. The mixture CVaR can be obtained by using weighted average of the minimazation CVaR and the maximization CVaR, which includes three special cases: Risk aversion, risk neutral and risk taking. We introduce the concept of ``risk preference coefficient'', and show that the mixture CVaR and loss aversion in prospect theory can all describe the fact that decision maker's sensibility to loss is higher than to gains when risk preference coefficient is large than one. We obtain monotonicities of optimal order quantity and optimal profit of retailer with respect to risk preference coefficient; prove that supply chain system can be coordinated by buy back contract for any risk preference coefficient that is larger than or equal to or less than one, and the relation between the optimal contractual parameters are deduced. Finally, numerical examples are given to illustrate the theoretical results of the proposed model.

MR(2010)主题分类: 

()
[1] 吴江, 杜亚倩, 张聊东. 考虑产品绿色度的双渠道供应链博弈分析与协调[J]. 系统科学与数学, 2021, 41(8): 2276-2291.
[2] 张霖霖,杨越,周永圣,张京敏. 考虑顾客退货的风险规避双渠道供应链协调机制研究[J]. 系统科学与数学, 2020, 40(11): 2017-2040.
[3] 陈胜利. 突发事件下零售商资金约束的风险规避型闭环供应链契约协调策略[J]. 系统科学与数学, 2020, 40(10): 1836-1865.
[4] 刘一健,岳小云. 不同供需下农产品双渠道供应链的决策[J]. 系统科学与数学, 2019, 39(11): 1808-1822.
[5] 禹海波,周端. 过度自信零售商供应链的得失共享回购契约模型[J]. 系统科学与数学, 2015, 35(1): 121-128.
[6] 肖成勇,王谦. 供应链协调中供应商的价格歧视策略[J]. 系统科学与数学, 2013, 33(7): 785-798.
[7] 肖成勇,王谦. 两层次广告博弈中供应商的一种]批发价协调策略[J]. 系统科学与数学, 2011, 31(11): 1504-1510.
[8] 李响,李勇建. 随机环境下考虑回收定价和销售定价的逆向供应链优化与协调研究[J]. 系统科学与数学, 2011, 31(11): 1511-1523.
[9] 杨丰梅, 成雅娜, 李健. 基于奖惩契约的闭环供应链协调性研究[J]. 系统科学与数学, 2011, 31(10): 1250-1258.
[10] 张海青, 田军. 采购方主导的基于能力期权契约的应急物资采购模型[J]. 系统科学与数学, 2011, 31(10): 1317-1327.
[11] 李健, 王伟, 杨丰梅. 基于三方回购契约的供应链库存调度协调研究[J]. 系统科学与数学, 2011, 31(10): 1363-1374.
阅读次数
全文


摘要