• 论文 •

### 有界Petri网的可逆性和活性的STP判别方法

1. 1.南开大学计算机与控制工程学院, 天津  300071;   天津市智能机器人技术重点实验室,天津 300071;2.南开大学计算机与控制工程学院,天津 300071;中国民航大学理学院,天津 300300;3.南开大学计算机与控制工程学院,天津,300071;4.中国民航大学理学院,天津 300300
• 出版日期:2016-03-25 发布日期:2016-03-24

HAN Xiaoguang,CHEN Zengqiang,LIU Zhongxin,ZHANG Qing. STP-BASED JUDGMENT METHOD OF REVERSIBILITY AND LIVENESS OF BOUNDED PETRI NETS[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(3): 361-370.

### STP-BASED JUDGMENT METHOD OF REVERSIBILITY AND LIVENESS OF BOUNDED PETRI NETS

HAN Xiaoguang 1, CHEN Zengqiang2 , LIU Zhongxin3 , ZHANG Qing4

1. 1.College of Computer and Control Engineering, Nankai University, Tianjin 300071; Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300071;2.College of Computer and Control Engineering, Nankai University, Tianjin 300071;College of Science, Civil Aviation University of China, Tianjin 300300;3.College of Computer and Control Engineering, Nankai University, Tianjin 300071;4.College of Science, Civil Aviation University of China, Tianjin 300300
• Online:2016-03-25 Published:2016-03-24

In this paper, we investigate the problems of reversibility and liveness of bounded Petri net systems (BPNSs) by using the semi-tensor product (STP) of matrices. First, several necessary and sufficient conditions for the reversibility and liveness of BPNSs are respectively obtained by using the state evolution equation of BPNSs. The new results, in this paper, are based on the matrix form, thus the problems of verifying reversibility and liveness of BPNSs are expressed into the matrix computation which are very simple and straightforward work with the help of Matlab toolbox of STP. The main advantage of the proposed method not only is that its form is a very simple and easy to calculate, but also is that it is a very convenient to implementation on a computer. Second, two examples are presented to illustrate the theoretical results in this paper and show that the new results are very effective in investigating the problems of the reversibility and liveness in BPNSs.

MR(2010)主题分类:

()
 [1] 高娜，韩晓光，陈增强，张青. 带有同步变迁的有界Petri网系统的建模及可达性分析[J]. 系统科学与数学, 2016, 36(7): 924-936. [2] 桑波. 两类一致等时系统的小振幅极限环分支[J]. 系统科学与数学, 2016, 36(5): 728-735. [3] 李睿，杨萌，楚天广. 概率布尔网络的集合镇定控制[J]. 系统科学与数学, 2016, 36(3): 371-380. [4] 李芳菲，孙继涛. 切换布尔网络稳定性的牵制控制[J]. 系统科学与数学, 2016, 36(3): 390-398. [5] 程代展，刘挺，王元华. 博弈论中的矩阵方法[J]. 系统科学与数学, 2014, 34(11): 1291-1305. [6] 程代展，赵寅，徐听听. 演化博弈与逻辑动态系统的优化控制[J]. 系统科学与数学, 2012, 32(10): 1226-1238. [7] 齐雅茹, 黄俊杰, 阿拉坦仓. 无界奇异$\mathscr{J}$-自伴算子矩阵的可逆性与可逆补[J]. 系统科学与数学, 2011, 31(5): 614-619. [8] 陈丽娟;杨欣. 基于奇偶校验的Petri网控制器的故障检测[J]. 系统科学与数学, 2009, 29(2): 263-270.