非线性Black-Scholes模型下障碍期权定

孙玉东,王秀芬,童红

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (4) : 513-527.

PDF(426 KB)
PDF(426 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (4) : 513-527. DOI: 10.12341/jssms12769
论文

非线性Black-Scholes模型下障碍期权定

    孙玉东,王秀芬,童红
作者信息 +

BARRIER OPTIONS' PRICING UNDER THE NONLINEAR BLACK-SCHOLES MODEL

    SUN Yudong ,WANG Xiufen ,TONG Hong
Author information +
文章历史 +

摘要

研究了原生资产价格遵循非线性Black-Scholes模型时障碍期权的定价问题. 首先,根据混合分数布朗运动的Ito公式和金融市场的复制策略,得到了障碍期权适合的抛物初边值问题. 其次,利用扰动理论中单参数摄动展开方法,给出了障碍期权的近似定价公式. 最后,利用Feyman-Kac公式分析了近似定价公式的误差估计问题,结果表明近似解一致收敛于相应期权价格的精确解.

Abstract

In this paper, the pricing problems of barrier options are discussed under the condition that the price of underlying asset follows the nonlinear Black-Scholes model. First, the parabolic initial- boundary value problems for barrier options are obtained by replicating strategy and Ito formula for the mixed fractional Brownian motion. Second, the author uses the perturbation method of single-parameter to obtain asymptomatic formulae of barrier options pricing problems. Finally, error estimates of these asymptotic solutions are illustrated by using the Feymann-Kac formula in which the results indicate that the asymptotic solutions uniformly converges to its exact solutions.

关键词

非线性Black-Scholes模型 / 障碍期权 / 近似定价公式 / 误差分析.

引用本文

导出引用
孙玉东 , 王秀芬 , 童红. 非线性Black-Scholes模型下障碍期权定. 系统科学与数学, 2016, 36(4): 513-527. https://doi.org/10.12341/jssms12769
SUN Yudong , WANG Xiufen , TONG Hong. BARRIER OPTIONS' PRICING UNDER THE NONLINEAR BLACK-SCHOLES MODEL. Journal of Systems Science and Mathematical Sciences, 2016, 36(4): 513-527 https://doi.org/10.12341/jssms12769
中图分类号: 60H10    90A06   
PDF(426 KB)

Accesses

Citation

Detail

段落导航
相关文章

/