• 论文 • 上一篇    下一篇

基于添加惩罚策略的囚徒困境博弈的网络演化模型与分析

葛美侠,赵建立,李莹   

  1. 聊城大学, 聊城 252000
  • 出版日期:2016-11-25 发布日期:2017-01-18

葛美侠,赵建立,李莹. 基于添加惩罚策略的囚徒困境博弈的网络演化模型与分析[J]. 系统科学与数学, 2016, 36(11): 2041-2048.

Ge Meixia,Zhao Jianli,Li Ying. MODELING AND ANALYSIS OF NETWORK EVOLUTION BASED ON PRISONER'S DILEMMA GAME WITH PUNISHMENT STRATEGY[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(11): 2041-2048.

MODELING AND ANALYSIS OF NETWORK EVOLUTION BASED ON PRISONER'S DILEMMA GAME WITH PUNISHMENT STRATEGY

Ge Meixia , Zhao Jianli ,Li Ying   

  1. Liaocheng University, Liaocheng 252000
  • Online:2016-11-25 Published:2017-01-18

研究了基于添加惩罚策略的囚徒困境 博弈的网络演化模型. 利用矩阵的半张量积方法, 建立了该 网络演化博弈的数学模型, 并结合逻辑的矩阵表达, 将该数学模型表示成动态逻辑系统并转化成代数形式. 然后, 对其动态演化过程进行分析, 讨论了最终合作水平. 最后, 通过例子对结论进行验证.

This paper investigates the modeling and analysis of network evolution based on prisoner's dilemma game with punishment strategy.\ Using the method of semi-tensor product of matrices ,\ the mathematical model of the networked evolutionary game is built .\ The networked evolutionary game is expressed as a logical dynamic system and then converted into its algebraic form rely on the matrix expression of logic and the method of seme-tensor product of matrices.\ Next,\ the dynamic evolution process is analysed and the final cooperation levels of the networked evolutionary game is discussed.\ Finally,\ an illustrative example is given to show the effectiveness of our main results.

MR(2010)主题分类: 

()
[1] 时胜男,徐勇,苏勇.  网络演化知识博弈模型与算法[J]. 系统科学与数学, 2020, 40(3): 423-433.
[2] 高娜,韩晓光,陈增强,张青. 带有同步变迁的有界Petri网系统的建模及可达性分析[J]. 系统科学与数学, 2016, 36(7): 924-936.
[3] 李芳菲,孙继涛. 切换布尔网络稳定性的牵制控制[J]. 系统科学与数学, 2016, 36(3): 390-398.
[4] 付世华,赵建立,潘金凤. 布尔网络的稳定性与镇定[J]. 系统科学与数学, 2014, 34(4): 385-391.
[5] 张利军;程代展;李春文. 立体阵的一般结构[J]. 系统科学与数学, 2005, 25(4): 439-450.
阅读次数
全文


摘要